2,113 research outputs found
Assortativity and leadership emergence from anti-preferential attachment in heterogeneous networks
Many real-world networks exhibit degree-assortativity, with nodes of similar
degree more likely to link to one another. Particularly in social networks, the
contribution to the total assortativity varies with degree, featuring a
distinctive peak slightly past the average degree. The way traditional models
imprint assortativity on top of pre-defined topologies is via degree-preserving
link permutations, which however destroy the particular graph's hierarchical
traits of clustering. Here, we propose the first generative model which creates
heterogeneous networks with scale-free-like properties and tunable realistic
assortativity. In our approach, two distinct populations of nodes are added to
an initial network seed: one (the followers) that abides by usual preferential
rules, and one (the potential leaders) connecting via anti-preferential
attachments, i.e. selecting lower degree nodes for their initial links. The
latter nodes come to develop a higher average degree, and convert eventually
into the final hubs. Examining the evolution of links in Facebook, we present
empirical validation for the connection between the initial anti-preferential
attachment and long term high degree. Thus, our work sheds new light on the
structure and evolution of social networks
Synchronization Properties of Network Motifs
We address the problem of understanding the variable abundance of 3-node and
4-node subgraphs (motifs) in complex networks from a dynamical point of view.
As a criterion in the determination of the functional significance of a n-node
subgraph, we propose an analytic method to measure the stability of the
synchronous state (SSS) the subgraph displays. We show that, for undirected
graphs, the SSS is correlated with the relative abundance, while in directed
graphs the correlation exists only for some specific motifs.Comment: 7 pages, 3 figure
Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to beta Pictoris b and SPHERE observations
We aim to interpret future photometric and spectral measurements from these
instruments, in terms of physical parameters of the planets, with an
atmospheric model using a minimal number of assumptions and parameters.
We developed Exoplanet Radiative-convective Equilibrium Model (Exo-REM) to
analyze the photometric and spectro- scopic data of directly imaged planets.
The input parameters are a planet's surface gravity (g), effective temperature
(Teff ), and elemental composition. The model predicts the equilibrium
temperature profile and mixing ratio profiles of the most important gases.
Opacity sources include the H2-He collision-induced absorption and molecular
lines from eight compounds (including CH4 updated with the Exomol line list).
Absorption by iron and silicate cloud particles is added above the expected
condensation levels with a fixed scale height and a given optical depth at some
reference wavelength. Scattering was not included at this stage.
We applied Exo-REM to photometric and spectral observations of the planet
beta Pictoris b obtained in a series of near-IR filters. We derived Teff = 1550
+- 150 K, log(g) = 3.5 +- 1, and radius R = 1.76 +- 0.24 RJup (2-{\sigma} error
bars from photometric measurements). These values are comparable to those found
in the literature, although with more conservative error bars, consistent with
the model accuracy. We were able to reproduce, within error bars, the J- and
H-band spectra of beta Pictoris b. We finally investigated the precision to
which the above parameterComment: 15 pages, 14 figures, accepted by A&
Morphology of the very inclined debris disk around HD 32297
Direct imaging of circumstellar disks at high angular resolution is mandatory
to provide morphological information that bring constraints on their
properties, in particular the spatial distribution of dust. New techniques
combining observing strategy and data processing now allow very high contrast
imaging with 8-m class ground-based telescopes (10^-4 to 10^-5 at ~1") and
complement space telescopes while improving angular resolution at near infrared
wavelengths. We carried out a program at the VLT with NACO to image known
debris disks with higher angular resolution in the near IR than ever before in
order to study morphological properties and ultimately to detect signpost of
planets. The observing method makes use of advanced techniques: Adaptive
Optics, Coronagraphy and Differential Imaging, a combination designed to
directly image exoplanets with the upcoming generation of "planet finders" like
GPI (Gemini Planet Imager) and SPHERE (Spectro-Polarimetric High contrast
Exoplanet REsearch). Applied to extended objects like circumstellar disks, the
method is still successful but produces significant biases in terms of
photometry and morphology. We developed a new model-matching procedure to
correct for these biases and hence to bring constraints on the morphology of
debris disks. From our program, we present new images of the disk around the
star HD 32297 obtained in the H (1.6mic) and Ks (2.2mic) bands with an
unprecedented angular resolution (~65 mas). The images show an inclined thin
disk detected at separations larger than 0.5-0.6". The modeling stage confirms
a very high inclination (i=88{\deg}) and the presence of an inner cavity inside
r_0~110AU. We also found that the spine (line of maximum intensity along the
midplane) of the disk is curved and we attributed this feature to a large
anisotropic scattering factor (g~0.5, valid for an non-edge on disk). Abridged
...Comment: 12 pages, 10 figures, accepted for publication in Astronomy and
Astrophysic
Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations
We recently reported on the detection of a possible planetary-mass companion
to Beta Pictoris at a projected separation of 8 AU from the star, using data
taken in November 2003 with NaCo, the adaptive-optics system installed on the
Very Large Telescope UT4. Eventhough no second epoch detection was available,
there are strong arguments to favor a gravitationally bound companion rather
than a background object. If confirmed and located at a physical separation of
8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be
the closest planet to its star ever imaged, could be formed via core-accretion,
and could explain the main morphological and dynamical properties of the dust
disk. Our goal was to return to Beta Pic five years later to obtain a
second-epoch observation of the companion or, in case of a non-detection,
constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and
Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with
NaCo in January and February 2009. We also use 4QPM data taken in November
2004. No point-like signal with the brightness of the companion candidate
(apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances
down to 6.5 AU from the star in the 2009 data. As expected, the non-detection
does not allow to rule out a background object; however, we show that it is
consistent with the orbital motion of a bound companion that got closer to the
star since first observed in 2003 and that is just emerging from behind the
star at the present epoch. We place strong constraints on the possible orbits
of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy
and Astrophysic
Sparse aperture masking at the VLT II. Detection limits for the eight debris disks stars Pic, AU Mic, 49 Cet, Tel, Fomalhaut, g Lup, HD181327 and HR8799
Context. The formation of planetary systems is a common, yet complex
mechanism. Numerous stars have been identified to possess a debris disk, a
proto-planetary disk or a planetary system. The understanding of such formation
process requires the study of debris disks. These targets are substantial and
particularly suitable for optical and infrared observations. Sparse Aperture
masking (SAM) is a high angular resolution technique strongly contributing to
probe the region from 30 to 200 mas around the stars. This area is usually
unreachable with classical imaging, and the technique also remains highly
competitive compared to vortex coronagraphy. Aims. We aim to study debris disks
with aperture masking to probe the close environment of the stars. Our goal is
either to find low mass companions, or to set detection limits. Methods. We
observed eight stars presenting debris disks ( Pictoris, AU
Microscopii, 49 Ceti, Telescopii, Fomalhaut, g Lupi, HD181327 and
HR8799) with SAM technique on the NaCo instrument at the VLT. Results. No close
companions were detected using closure phase information under 0.5 of
separation from the parent stars. We obtained magnitude detection limits that
we converted to Jupiter masses detection limits using theoretical isochrones
from evolutionary models. Conclusions. We derived upper mass limits on the
presence of companions in the area of few times the diffraction limit of the
telescope around each target star.Comment: 7 pages, All magnitude detection limits maps are only available in
electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5
- …