439 research outputs found
Non-linear Relaxation of Interacting Bosons Coherently Driven on a Narrow Optical Transition
We study the dynamics of a two-component Bose-Einstein condensate (BEC) of
Yb atoms coherently driven on a narrow optical transition. The
excitation transfers the BEC to a superposition of states with different
internal and momentum quantum numbers. We observe a crossover with decreasing
driving strength between a regime of damped oscillations, where coherent
driving prevails, and an incoherent regime, where relaxation takes over.
Several relaxation mechanisms are involved: inelastic losses involving two
excited atoms, leading to a non-exponential decay of populations; Doppler
broadening due to the finite momentum width of the BEC and inhomogeneous
elastic interactions, both leading to dephasing and to damping of the
oscillations. We compare our observations to a two-component Gross-Pitaevskii
(GP) model that fully includes these effects. For small or moderate densities,
the damping of the oscillations is mostly due to Doppler broadening. In this
regime, we find excellent agreement between the model and the experimental
results. For higher densities, the role of interactions increases and so does
the damping rate of the oscillations. The damping in the GP model is less
pronounced than in the experiment, possibly a hint for many-body effects not
captured by the mean-field description.Comment: 7 pages, 4 figures; supplementary material available as ancillary
fil
Optical properties of an ensemble of G-centers in silicon
We addressed the carrier dynamics in so-called G-centers in silicon
(consisting of substitutional-interstitial carbon pairs interacting with
interstitial silicons) obtained via ion implantation into a
silicon-on-insulator wafer. For this point defect in silicon emitting in the
telecommunication wavelength range, we unravel the recombination dynamics by
time-resolved photoluminescence spectroscopy. More specifically, we performed
detailed photoluminescence experiments as a function of excitation energy,
incident power, irradiation fluence and temperature in order to study the
impact of radiative and non-radiative recombination channels on the spectrum,
yield and lifetime of G-centers. The sharp line emitting at 969 meV (1280
nm) and the broad asymmetric sideband developing at lower energy share the same
recombination dynamics as shown by time-resolved experiments performed
selectively on each spectral component. This feature accounts for the common
origin of the two emission bands which are unambiguously attributed to the
zero-phonon line and to the corresponding phonon sideband. In the framework of
the Huang-Rhys theory with non-perturbative calculations, we reach an
estimation of 1.60.1 \angstrom for the spatial extension of the
electronic wave function in the G-center. The radiative recombination time
measured at low temperature lies in the 6 ns-range. The estimation of both
radiative and non-radiative recombination rates as a function of temperature
further demonstrate a constant radiative lifetime. Finally, although G-centers
are shallow levels in silicon, we find a value of the Debye-Waller factor
comparable to deep levels in wide-bandgap materials. Our results point out the
potential of G-centers as a solid-state light source to be integrated into
opto-electronic devices within a common silicon platform
Optimized loading of an optical dipole trap for the production of Chromium BECs
We report on a strategy to maximize the number of chromium atoms transferred
from a magneto-optical trap into an optical trap through accumulation in
metastable states via strong optical pumping. We analyse how the number of
atoms in a chromium Bose Einstein condensate can be raised by a proper handling
of the metastable state populations. Four laser diodes have been implemented to
address the four levels that are populated during the MOT phase. The individual
importance of each state is specified. To stabilize two of our laser diode, we
have developed a simple ultrastable passive reference cavity whose long term
stability is better than 1 MHz
Total Syntheses of Amphidinolide H and G
Eureka! The first conquest of the exceptionally potent cytotoxic agent amphidinolideâ
H, which exhibits activity in the picomolar range against human epidermoid cancer cells, was long overdue. The successful route critically hinges upon the scrupulous optimization of the fragment-coupling events (see picture; RCM=ring-closing metathesis) and on the careful adjustment of the peripheral protecting-group pattern
Crystal structure, biochemical and biophysical characterisation of NHR1 domain of E3 Ubiquitin ligase neutralized
International audienceNotch signaling controls diverse developmental decisions of central importance to cell activity. One of the conserved positive regulators of No- tch signaling is Neuralized, the E3 Ubiquitin li-gase enzyme that regulates signaling activity by endocytosis. Neuralized has two novel repeats, NHR1 and NHR2, with a RING finger motif at the C-terminus. Both endocytosis of the Notch ligand, Delta, and inhibition of Notch signaling by Tom, a bearded family member, require the NHR1 domain. Here we describe the first crystal structure of NHR1 domain from Drosophila me- lanogaster, solved to 2.1 Ă
resolution by X-ray analysis. Using NMR and other biophysical tech- niques we define a minimal binding region of Tom, consisting of 12 residues, which interacts with NHR1 and show by interfacial analysis of protein monolayers that NHR1 binds PI4P. Taken together, the studies provide insight into mo-lecular interactions that are important for Notch signaling
Total Syntheses of Amphidinolides B1, B4, G1, H1 and Structure Revision of Amphidinolide H2
Nature is a pretty unselective âchemistâ when it comes to making the highly cytotoxic amphidinolide macrolides of the B/G/H series. To date, 16 different such compounds have been isolated, all of which could now be approached by a highly convergent and largely catalysis-based route (see figure). This notion is exemplified by the total synthesis of five prototype members of this family. Dinoflagellates of the genus Amphidinium produce a âlibraryâ of closely related secondary metabolites of mixed polyketide origin, which are extremely scarce but highly promising owing to the exceptional cytotoxicity against various cancer cell lines. Because of the dense array of sensitive functionalities on their largely conserved macrocyclic frame, however, these amphidinolides of the B, D, G and H types elapsed many previous attempts at their synthesis. Described herein is a robust, convergent and hence general blueprint which allowed not only to conquest five prototype members of these series, but also holds the promise of making ânon-naturalâ analogues available by diverted total synthesis. This notion transpires for a synthesis-driven structure revision of amphidinolide H2. The successful route hinges upon a highly productive StilleâMigita cross-coupling reaction at the congested and chemically labile 1,3-diene site present in all such targets, which required the development of a modified chloride- and fluoride-free protocol. The macrocyclic ring could be formed with high efficiency and selectivity by ring-closing metathesis (RCM) engaging a vinyl epoxide unit as one of the reaction partners. Because of the sensitivity of the targets to oxidizing and reducing conditions as well as to pH changes, the proper adjustment of the protecting group pattern for the peripheral -OH functions also constitutes a critical aspect, which has to converge to silyl groups only once the diene is in place. Tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) turned out to be a sufficiently mild fluoride source to allow for the final deprotection without damaging the precious macrolides
Tunneling control and localization for Bose-Einstein condensates in a frequency modulated optical lattice
The similarity between matter waves in periodic potential and solid-state
physics processes has triggered the interest in quantum simulation using
Bose-Fermi ultracold gases in optical lattices. The present work evidences the
similarity between electrons moving under the application of oscillating
electromagnetic fields and matter waves experiencing an optical lattice
modulated by a frequency difference, equivalent to a spatially shaken periodic
potential. We demonstrate that the tunneling properties of a Bose-Einstein
condensate in shaken periodic potentials can be precisely controlled. We take
additional crucial steps towards future applications of this method by proving
that the strong shaking of the optical lattice preserves the coherence of the
matter wavefunction and that the shaking parameters can be changed
adiabatically, even in the presence of interactions. We induce reversibly the
quantum phase transition to the Mott insulator in a driven periodic potential.Comment: Laser Physics (in press
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
- âŠ