11,546 research outputs found

    Signs in the cd-index of Eulerian partially ordered sets

    Get PDF
    A graded partially ordered set is Eulerian if every interval has the same number of elements of even rank and of odd rank. Face lattices of convex polytopes are Eulerian. For Eulerian partially ordered sets, the flag vector can be encoded efficiently in the cd-index. The cd-index of a polytope has all positive entries. An important open problem is to give the broadest natural class of Eulerian posets having nonnegative cd-index. This paper completely determines which entries of the cd-index are nonnegative for all Eulerian posets. It also shows that there are no other lower or upper bounds on cd-coefficients (except for the coefficient of c^n)

    Generalizations of Eulerian partially ordered sets, flag numbers, and the Mobius function

    Get PDF
    A partially ordered set is r-thick if every nonempty open interval contains at least r elements. This paper studies the flag vectors of graded, r-thick posets and shows the smallest convex cone containing them is isomorphic to the cone of flag vectors of all graded posets. It also defines a k-analogue of the Mobius function and k-Eulerian posets, which are 2k-thick. Several characterizations of k-Eulerian posets are given. The generalized Dehn-Sommerville equations are proved for flag vectors of k-Eulerian posets. A new inequality is proved to be valid and sharp for rank 8 Eulerian posets
    • …
    corecore