4,251 research outputs found
K-Rb Fermi-Bose mixtures: vortical states and sag
We study a confined mixture of bosons and fermions in the quantal degeneracy
regime with attractive boson-fermion interaction. We discuss the effect that
the presence of vortical states and the displacement of the trapping potentials
may have on mixtures near collapse, and investigate the phase stability diagram
of the K-Rb mixture in the mean field approximation supposing in one case that
the trapping potentials felt by bosons and fermions are shifted from each
other, as it happens in the presence of a gravitational sag, and in another
case, assuming that the Bose condensate sustains a vortex state. In both cases,
we have obtained an analytical expression for the fermion effective potential
when the Bose condensate is in the Thomas-Fermi regime, that can be used to
determine the maxima of the fermionic density. We have numerically checked that
the values one obtains for the location of these maxima using the analytical
formulas remain valid up to the critical boson and fermion numbers, above which
the mixture collapses.Comment: Submitted to Phys. Rev. A (on May 2004), 15 pages with 3 figure
Surface location of sodium atoms attached to He-3 nanodroplets
We have experimentally studied the electronic excitation of
Na atoms attached to He droplets by means of laser-induced fluorescence as
well as beam depletion spectroscopy. From the similarities of the spectra
(width/shift of absorption lines) with these of Na on He droplets, we
conclude that sodium atoms reside in a ``dimple'' on the droplet surface. The
experimental results are supported by Density Functional calculations at zero
temperature, which confirm the surface location of sodium on He droplets,
and provide a microscopic description of the ``dimple'' structure.Comment: 4 pages, 5 figure
The Restriction Principle and Commuting Families of Toeplitz Operators on the Unit Ball
On the unit ball B^n we consider the weighted Bergman spaces H_\lambda and
their Toeplitz operators with bounded symbols. It is known from our previous
work that if a closed subgroup H of \widetilde{\SU(n,1)} has a
multiplicity-free restriction for the holomorphic discrete series of
\widetilde{\SU(n,1)}, then the family of Toeplitz operators with H-invariant
symbols pairwise commute. In this work we consider the case of maximal abelian
subgroups of \widetilde{\SU(n,1)} and provide a detailed proof of the pairwise
commutativity of the corresponding Toeplitz operators. To achieve this we
explicitly develop the restriction principle for each (conjugacy class of)
maximal abelian subgroup and obtain the corresponding Segal-Bargmann transform.
In particular, we obtain a multiplicity one result for the restriction of the
holomorphic discrete series to all maximal abelian subgroups. We also observe
that the Segal-Bargman transform is (up to a unitary transformation) a
convolution operator against a function that we write down explicitly for each
case. This can be used to obtain the explicit simultaneous diagonalization of
Toeplitz operators whose symbols are invariant by one of these maximal abelian
subgroups
Quantum key distribution using polarized coherent states
We discuss a continuous variables method of quantum key distribution
employing strongly polarized coherent states of light. The key encoding is
performed using the variables known as Stokes parameters, rather than the field
quadratures. Their quantum counterpart, the Stokes operators
(i=1,2,3), constitute a set of non-commuting operators, being the precision of
simultaneous measurements of a pair of them limited by an uncertainty-like
relation. Alice transmits a conveniently modulated two-mode coherent state, and
Bob randomly measures one of the Stokes parameters of the incoming beam. After
performing reconciliation and privacy amplification procedures, it is possible
to distill a secret common key. We also consider a non-ideal situation, in
which coherent states with thermal noise, instead of pure coherent states, are
used for encoding.Comment: Inclusion of a discussion about noise not controlled by Eve;
inclusion of a figure. A simplified version of this paper was submitted to a
Conference in Brazil (XXVII ENFMC) in 16/02/200
Spin and density longitudinal response of quantum dots in time-dependent local-spin-density approximation
The longitudinal dipole response of a quantum dot has been calculated in the
far-infrared regime using local spin density functional theory. We have studied
the coupling between the collective spin and density modes as a function of the
magnetic field. We have found that the spin dipole mode and single particle
excitations have a sizeable overlap, and that the magnetoplasmon modes can be
excited by the dipole spin operator if the dot is spin polarized. The frequency
of the dipole spin edge mode presents an oscillation which is clearly filling
factor () related. We have found that the spin dipole mode is especially
soft for even values, becoming unstable for magnetic fields in the region
. Results for selected number of electrons and confining
potentials are discussed. An analytical model which reproduces the main
features of the microscopic spectra has been developed.Comment: We have added some new references and minor changes on the mnuscript
have been mad
- …