272 research outputs found
MODELING OF THE CHEMICAL STAGE OF RADIOBIOLOGICAL MECHANISM USING PETRI NETS
The biological effect of ionizing particles is caused mainly by water radicals being formed by densely ionizing ends of primary or secondary charged particles during physical stage; only greater radical clusters being efficient in DNA molecule damaging. The given clusters diffuse after their formation and the radical concentration changes also by reactions running mutually or with other substances being present in corresponding clusters. The damage effect depends then on radical concentrations at a time when the cluster meets a DNA molecule. The influence of oxygen may be important (mainly in the case of low-LET radiation) because oxygen is always present in living cells. Oxygen may act then in two different directions: at small concentrations the interaction with hydrogen radicals prevails and final biological effect diminishes while at higher concentrations additional efficient oxygen radicals may be formed. The time evolution of changing radical concentrations during cluster diffusion may be modeled and analyzed well with the help of Continuous Petri nets
Delivering Challenging News: An Illness-Trajectory Communication Curriculum for Multispecialty Oncology Residents and Fellows
Introduction: Published curricula to teach communication skills for postgraduate fellows in oncology are few in number despite the fact that oncologists conduct many difficult discussions with their patients and their families. Such discussions may include disclosing initial diagnosis or relapse of a patient\u27s cancer or relaying a poor prognosis or change to palliative care. Methods: An eight-module course on communication in oncology practice was delivered over 2 months for palliative and oncology fellows and radiation oncology residents. Learners were given a precourse survey in which they were asked to rate their proficiency in various communication tasks. Each learner then participated in a videotaped precourse objective structured clinical exam (OSCE) on breaking bad news with standardized patients (SPs). The course took place over 8 weeks with weekly didactics and role-play. At the end of the course, a second OSCE took place. After the course was completed, the fellows again filled out a proficiency survey. Results: Twenty-two learners participated over 2 years of this course. Participants reported a significant increase in perceived competence in all areas on the postcourse survey. SP feedback on OSCEs pre- and postcourse indicated improvement in skills for learners. Pre- and postcourse OSCE video assessment revealed a significant improvement in global communication skills. Discussion: Initial data show that this course successfully improved communication skills and increased fellows\u27 comfort level across several domains of communication. Future directions include validating our assessment tool, expanding the topic base, and investigating the impact on practice after course completion
Glutathione infusion before primary percutaneous coronary intervention: A randomised controlled pilot study
Objective: In the setting of reperfused ST-elevation myocardial infarction (STEMI), increased production of reactive oxygen species (ROS) contributes to reperfusion injury. Among ROS, hydrogen peroxide (H2O2) showed toxic effects on human cardiomyocytes and may induce microcirculatory impairment. Glutathione (GSH) is a water-soluble tripeptide with a potent oxidant scavenging activity. We hypothesised that the infusion of GSH before acute reoxygenation might counteract the deleterious effects of increased H2O2 generation on myocardium. Methods: Fifty consecutive patients with STEMI, scheduled to undergo primary angioplasty, were randomly assigned, before intervention, to receive an infusion of GSH (2500 mg/25 mL over 10 min), followed by drug administration at the same doses at 24, 48 and 72 hours elapsing time or placebo. Peripheral blood samples were obtained before and at the end of the procedure, as well as after 5 days. H2O2 production, 8-iso-prostaglandin F2α (PGF2α) formation, H2O2 breakdown activity (HBA) and nitric oxide (NO) bioavailability were determined. Serum cardiactroponin T (cTpT) was measured at admission and up to 5 days. Results: Following acute reperfusion, a significant reduction of H2O2 production (p=0.0015) and 8-iso-PGF2α levels (p=0.0003), as well as a significant increase in HBA (p<0.0001)and NO bioavailability (p=0.035), was found in the GSH group as compared with placebo. In treated patients, attenuated production of H2O2 persisted up to 5 days from the index procedure (p=0.009) and these changes was linked to those of the cTpT levels (r=0.41, p=0.023). Conclusion: The prophylactic and prolonged infusion of GSH seems to determine a rapid onset and persistent blunting of H2O2 generation improving myocardial cell survival. Nevertheless, a larger trial, adequately powered for evaluation of clinical endpoints, is ongoing to confirm the current finding
Measuring cognitive load: mixed results from a handover simulation for medical students.
The application of cognitive load theory to workplace-based activities such as patient handovers is hindered by the absence of a measure of the different load types. This exploratory study tests a method for measuring cognitive load during handovers.The authors developed the Cognitive Load Inventory for Handoffs (CLI4H) with items for intrinsic, extraneous, and germane load. Medical students completed the measure after participating in a simulated handover. Exploratory factor and correlation analyses were performed to collect evidence for validity.Results yielded a two-factor solution for intrinsic and germane load that explained 50 % of the variance. The extraneous load items performed poorly and were removed from the model. The score for intrinsic load correlated with the Paas Cognitive Load scale (r = 0.31, p = 0.004) and was lower for students with more prior handover training (p = 0.036). Intrinsic load did not, however, correlate with performance. Germane load did not correlate with the Paas Cognitive Load scale but did correlate as expected with performance (r = 0.30, p = 0.005) and was lower for those students with more prior handover training (p = 0.03).The CLI4H yielded mixed results with some evidence for validity of the score from the intrinsic load items. The extraneous load items performed poorly and the use of only a single item for germane load limits conclusions. The instrument requires further development and testing. Study results and limitations provide guidance to future efforts to measure cognitive load during workplace-based activities, such as handovers
TLR9 ligation in pancreatic stellate cells promotes tumorigenesis
Modulation of Toll-like receptor (TLR) signaling can have protective or protumorigenic effects on oncogenesis depending on the cancer subtype and on specific inflammatory elements within the tumor milieu. We found that TLR9 is widely expressed early during the course of pancreatic transformation and that TLR9 ligands are ubiquitous within the tumor microenvironment. TLR9 ligation markedly accelerates oncogenesis, whereas TLR9 deletion is protective. We show that TLR9 activation has distinct effects on the epithelial, inflammatory, and fibrogenic cellular subsets in pancreatic carcinoma and plays a central role in cross talk between these compartments. Specifically, TLR9 activation can induce proinflammatory signaling in transformed epithelial cells, but does not elicit oncogene expression or cancer cell proliferation. Conversely, TLR9 ligation induces pancreatic stellate cells (PSCs) to become fibrogenic and secrete chemokines that promote epithelial cell proliferation. TLR9-activated PSCs mediate their protumorigenic effects on the epithelial compartment via CCL11. Additionally, TLR9 has immune-suppressive effects in the tumor microenvironment (TME) via induction of regulatory T cell recruitment and myeloid-derived suppressor cell proliferation. Collectively, our work shows that TLR9 has protumorigenic effects in pancreatic carcinoma which are distinct from its influence in extrapancreatic malignancies and from the mechanistic effects of other TLRs on pancreatic oncogenesis
Klebsiella pneumoniae Multiresistance Plasmid pMET1: Similarity with the Yersinia pestis Plasmid pCRY and Integrative Conjugative Elements
Dissemination of antimicrobial resistance genes has become an important public health and biodefense threat. Plasmids are important contributors to the rapid acquisition of antibiotic resistance by pathogenic bacteria.The nucleotide sequence of the Klebsiella pneumoniae multiresistance plasmid pMET1 comprises 41,723 bp and includes Tn1331.2, a transposon that carries the bla(TEM-1) gene and a perfect duplication of a 3-kbp region including the aac(6')-Ib, aadA1, and bla(OXA-9) genes. The replication region of pMET1 has been identified. Replication is independent of DNA polymerase I, and the replication region is highly related to that of the cryptic Yersinia pestis 91001 plasmid pCRY. The potential partition region has the general organization known as the parFG locus. The self-transmissible pMET1 plasmid includes a type IV secretion system consisting of proteins that make up the mating pair formation complex (Mpf) and the DNA transfer (Dtr) system. The Mpf is highly related to those in the plasmid pCRY, the mobilizable high-pathogenicity island from E. coli ECOR31 (HPI(ECOR31)), which has been proposed to be an integrative conjugative element (ICE) progenitor of high-pathogenicity islands in other Enterobacteriaceae including Yersinia species, and ICE(Kp1), an ICE found in a K. pneumoniae strain causing primary liver abscess. The Dtr MobB and MobC proteins are highly related to those of pCRY, but the endonuclease is related to that of plasmid pK245 and has no significant homology with the protein of similar function in pCRY. The region upstream of mobB includes the putative oriT and shares 90% identity with the same region in the HPI(ECOR31).The comparative analyses of pMET1 with pCRY, HPI(ECOR31), and ICE(Kp1 )show a very active rate of genetic exchanges between Enterobacteriaceae including Yersinia species, which represents a high public health and biodefense threat due to transfer of multiple resistance genes to pathogenic Yersinia strains
Bacterial Genome Partitioning: N-Terminal Domain of IncC Protein Encoded by Broad-Host-Range Plasmid RK2 Modulates Oligomerisation and DNA Binding
ParAWalker ATPases form part of the machinery that promotes better-thanrandom segregation of bacterial genomes. ParA proteins normally occur in one of two forms, differing by their N-terminal domain (NTD) of approximately 100 aa, which is generally associated with site-specific DNA binding. Unusually, and for as yet unknown reasons, parA (incC) of IncP-1 plasmids is translated from alternative start codons producing two
forms, IncC1 (364 aa) and IncC2 (259 aa), whose ratio varies between hosts.IncC2 could be detected as an oligomeric form containing dimers, tetramers
and octamers, but the N-terminal extension present in IncC1 favours nucleotide-stimulated dimerisation as well as high-affinity and ATPdependent non-specific DNA binding. The IncC1 NTD does not dimerise or bind DNA alone, but it does bind IncC2 in the presence of nucleotides. Mixing IncC1 and IncC2 improved polymerisation and DNA binding. Thus,the NTD may modulate the polymerisation interface, facilitating polymerisation/
depolymerisation and DNA binding, to promote the cycle that
drives partitioning
- …