1,006 research outputs found
The Fermi edge singularity of spin polarized electrons
We study the absorption spectrum of a two-dimensional electron gas (2DEG) in
a magnetic field. We find that that at low temperatures, when the 2DEG is spin
polarized, the absorption spectra, which correspond to the creation of spin up
or spin down electron, differ in magnitude, linewidth and filling factor
dependence. We show that these differences can be explained as resulting from
creation of a Mahan exciton in one case, and of a power law Fermi edge
singularity in the other.Comment: 4 pages, 4 figures, published in Phys. Rev. Let
Optical absorption to probe the quantum Hall ferromagnet at filling factor
Optical absorption measurements are used to probe the spin polarization in
the integer and fractional quantum Hall effect regimes. The system is fully
spin polarized only at filling factor and at very low
temperatures( mK). A small change in filling factor
() leads to a significant depolarization. This
suggests that the itinerant quantum Hall ferromagnet at is surprisingly
fragile against increasing temperature, or against small changes in filling
factor.Comment: 4 pages, 2 figure
Multi-layer atom chips for versatile atom micro manipulation
We employ a combination of optical UV- and electron-beam-lithography to
create an atom chip combining sub-micron wire structures with larger
conventional wires on a single substrate. The new multi-layer fabrication
enables crossed wire configurations, greatly enhancing the flexibility in
designing potentials for ultra cold quantum gases and Bose-Einstein
condensates. Large current densities of >6 x 10^7 A/cm^2 and high voltages of
up to 65 V across 0.3 micron gaps are supported by even the smallest wire
structures. We experimentally demonstrate the flexibility of the next
generation atom chip by producing Bose-Einstein condensates in magnetic traps
created by a combination of wires involving all different fabrication methods
and structure sizes.Comment: 4 pages, 5 figure
An atom fiber for guiding cold neutral atoms
We present an omnidirectional matter wave guide on an atom chip. The
rotational symmetry of the guide is maintained by a combination of two current
carrying wires and a bias field pointing perpendicular to the chip surface. We
demonstrate guiding of thermal atoms around more than two complete turns along
a spiral shaped 25mm long curved path (curve radii down to 200m) at
various atom--surface distances (35-450m). An extension of the scheme for
the guiding of Bose-Einstein condensates is outlined
Optical Probing of the Spin Polarization of the nu=5/2 Quantum Hall State
We apply polarization resolved photoluminescence spectroscopy to measure the
spin polarization of a two dimensional electron gas in perpendicular magnetic
field. In the vicinity of filling factor nu=5/2, we observe a sharp
discontinuity in the energy of the zero Landau level emission line. We find
that the splitting between the two circular polarizations exhibits a sharp drop
at nu=5/2 and is equal to the bare Zeeman energy, which resembles the behavior
at even filling factors. We show that this behavior is consistent with filling
factor nu=5/2 being unpolarized
A systematic review of treating recurrent head and neck cancer: a reintroduction of brachytherapy with or without surgery.
Purpose: To review brachytherapy use in recurrent head and neck carcinoma (RHNC) with focus on its efficacy and complication rates.
Material and methods: A literature search of PubMed, Ovid, Google Scholar, and Scopus was conducted from 1990 to 2017. Publications describing treatment of RHNC with brachytherapy with or without surgery were included. The focus of this review is on oncologic outcomes and the safety of brachytherapy in the recurrent setting.
Results: Thirty studies involving RHNC treatment with brachytherapy were reviewed. Brachytherapy as adjunctive treatment to surgical resection appears to be associated with an improved local regional control and overall survival, when compared with the published rates for re-irradiation utilizing external beam radiotherapy (RT) or brachytherapy alone. Safety data remains variable with different isotopes and dose rates with implantable brachytherapy demonstrating a tolerable side effect profile.
Conclusions: Although surgery remains a mainstay treatment for RHNC, intraoperative interstitial brachytherapy delivery as adjunctive therapy may improve the treatment outcome and may be associated with fewer complication rates as compared to reirradiation using external beam radiotherapy. Further investigations are required to elucidate the role of brachytherapy for RHNC
Trapping and manipulating neutral atoms with electrostatic fields
We report on experiments with cold thermal Li atoms confined in combined
magnetic and electric potentials. A novel type of three-dimensional trap was
formed by modulating a magnetic guide using electrostatic fields. We observed
atoms trapped in a string of up to six individual such traps, a controlled
transport of an atomic cloud over a distance of 400m, and a dynamic
splitting of a single trap into a double well potential. Applications for
quantum information processing are discussed.Comment: 4 pages, 4 figure
Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization
We present measurements of optical interband absorption in the fractional
quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We
investigate the mechanism of singlet trion absorption, and show that its
circular dichroism can be used as a probe of the spin polarization of the
ground state of the two-dimensional electron system (2DES). We find that at nu
= 1/3 the 2DES is fully spin-polarized. Increasing the filling factor results
in a gradual depolarization, with a sharp minimum in the dichroism near nu =
2/3. We find that in the range 0.5 < nu < 0.85 the 2DES remains partially
polarized for the broad range of magnetic fields from 2.75 to 11 Tesla. This is
consistent with the presence of a mixture of polarized and depolarized regions.Comment: 4 pages, 4 figures (Fig 4 is in color
Disorder Potentials near Lithographically Fabricated Atom Chips
We show that previously observed large disorder potentials in magnetic
microtraps for neutral atoms are reduced by about two orders of magnitude when
using atom chips with lithographically fabricated high quality gold layers.
Using one dimensional Bose-Einstein condensates, we probe the remaining
magnetic field variations at surface distances down to a few microns.
Measurements on a 100 um wide wire imply that residual variations of the
current flow result from local properties of the wire.Comment: submitted on September 24th, 200
- …