62 research outputs found

    Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.)

    Get PDF
    Chickpea has a profound nutritional and economic value in vegetarian society. Continuous decline in chickpea productivity is attributed to insufficient genetic variability and different environmental stresses. Chickpea like several other legumes is highly susceptible to terminal drought stress. Multiple genes control drought tolerance and ASR gene plays a key role in regulating different plant stresses. The present study describes the molecular characterization and functional role of Abscissic acid and stress ripening (ASR) gene from chickpea (Cicer arietinum) and the gene sequence identified was submitted to NCBI Genbank (MK937569). Molecular analysis using MUSCLE software proved that the ASR nucleotide sequences in different legumes show variations at various positions though ASR genes are conserved in chickpea with only few variations. Sequence similarity of ASR gene to chickpea putative ABA/WDS induced protein mRNA clearly indicated its potential involvement in drought tolerance. Physiological screening and qRT-PCR results demonstrated increased ASR gene expression under drought stress possibly enabled genotypes to perform better under stress. Conserved domain search, protein structure analysis, prediction and validation, network analysis using Phyre2, Swiss-PDB viewer, ProSA and STRING analysis established the role of hypothetical ASR protein NP_001351739.1 in mediating drought responses. NP_001351739.1 might have enhanced the ASR gene activity as a transcription factor regulating drought stress tolerance in chickpea. This study could be useful in identification of new ASR genes that play a major role in drought tolerance and also develop functional markers for chickpea improvement

    Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot

    Get PDF
    Substantial climate changes are evident across Australia, with declining rainfall and rising temperature in conjunction with frequent fires. Considerable species loss and range contractions have been predicted; however, our understanding of how genetic variation may promote adaptation in response to climate change remains uncertain. Here we characterized candidate genes associated with rainfall gradients, temperatures, and fire intervals through environmental association analysis. We found that overall population adaptive genetic variation was significantly affected by shortened fire intervals, whereas declining rainfall and rising temperature did not have a detectable influence. Candidate SNPs associated with rainfall and high temperature were diverse, whereas SNPs associated with specific fire intervals were mainly fixed in one allele. Gene annotation further revealed four genes with functions in stress tolerance, the regulation of stomatal opening and closure, energy use, and morphogenesis with adaptation to climate and fire intervals. B. attenuata may tolerate further changes in rainfall and temperature through evolutionary adaptations based on their adaptive genetic variation. However, the capacity to survive future climate change may be compromised by changes in the fire regime

    A multiple species approach to biomass production from native herbaceous perennial feedstocks

    Full text link

    Sialoblastoma: A rare salivary gland neoplasm

    No full text

    Sialoblastoma: A rare salivary gland neoplasm

    No full text

    Transgenic indica rice cultivar ‘Swarna’ expressing a potato chymotrypsin inhibitor pin2 gene show enhanced levels of resistance to yellow stem borer

    No full text
    Transgenic rice was developed from ‘Swarna’, the most popular indica rice cultivar (Oryza sativa L.) in South East Asia, with a potato chymotrypsin inhibitor gene (pin2) through Agrobacterium-mediated transformation. Four out of nine primary transgenic plants had a single-copy T-DNA insertion while other five plants had two copies. Mendelian pattern of inheritance of the transgene (pin2) was observed in the T1 generation progeny plants. Whole plant bioassays conducted at both vegetative and reproductive stages and cut stem assays showed enhanced levels of resistance of transgenic rice against yellow stem borer. The transgenic rice lines with plant derived proteinase inhibitor genes would develop into resistant cultivars to fit into resistance breeding strategies as an important component of integrated pest management in rice
    • …
    corecore