65 research outputs found
The ideal gas as an urn model: derivation of the entropy formula
The approach of an ideal gas to equilibrium is simulated through a
generalization of the Ehrenfest ball-and-box model. In the present model, the
interior of each box is discretized, {\it i.e.}, balls/particles live in cells
whose occupation can be either multiple or single. Moreover, particles
occasionally undergo random, but elastic, collisions between each other and
against the container walls. I show, both analitically and numerically, that
the number and energy of particles in a given box eventually evolve to an
equilibrium distribution which, depending on cell occupations, is binomial
or hypergeometric in the particle number and beta-like in the energy.
Furthermore, the long-run probability density of particle velocities is
Maxwellian, whereas the Boltzmann entropy exactly reproduces the
ideal-gas entropy. Besides its own interest, this exercise is also relevant for
pedagogical purposes since it provides, although in a simple case, an explicit
probabilistic foundation for the ergodic hypothesis and for the maximum-entropy
principle of thermodynamics. For this reason, its discussion can profitably be
included in a graduate course on statistical mechanics.Comment: 17 pages, 3 figure
Scale-invariance in gravity and implications for the cosmological constant
Recently a scale invariant theory of gravity was constructed by imposing a
conformal symmetry on general relativity. The imposition of this symmetry
changed the configuration space from superspace - the space of all Riemannian
3-metrics modulo diffeomorphisms - to conformal superspace - the space of all
Riemannian 3-metrics modulo diffeomorphisms and conformal transformations.
However, despite numerous attractive features, the theory suffers from at least
one major problem: the volume of the universe is no longer a dynamical
variable. In attempting to resolve this problem a new theory is found which has
several surprising and atractive features from both quantisation and
cosmological perspectives. Furthermore, it is an extremely restrictive theory
and thus may provide testable predictions quickly and easily. One particularly
interesting feature of the theory is the resolution of the cosmological
constant problem.Comment: Replaced with final version: minor changes to text; references adde
Proof of the Thin Sandwich Conjecture
We prove that the Thin Sandwich Conjecture in general relativity is valid,
provided that the data satisfy certain geometric
conditions. These conditions define an open set in the class of possible data,
but are not generically satisfied. The implications for the ``superspace''
picture of the Einstein evolution equations are discussed.Comment: 8 page
Quantum Geometrodynamics I: Quantum-Driven Many-Fingered Time
The classical theory of gravity predicts its own demise -- singularities. We
therefore attempt to quantize gravitation, and present here a new approach to
the quantization of gravity wherein the concept of time is derived by imposing
the constraints as expectation-value equations over the true dynamical degrees
of freedom of the gravitational field -- a representation of the underlying
anisotropy of space. This self-consistent approach leads to qualitatively
different predictions than the Dirac and the ADM quantizations, and in
addition, our theory avoids the interpretational conundrums associated with the
problem of time in quantum gravity. We briefly describe the structure of our
functional equations, and apply our quantization technique to two examples so
as to illustrate the basic ideas of our approach.Comment: 11, (No Figures), (Typeset using RevTeX
Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit
We revisit the relationship between the Nernst theorem and the Kelvin-Planck
statement of the second law. We propose that the exchange of entropy uniformly
vanishes as the temperature goes to zero. The analysis of this assumption shows
that is equivalent to the fact that the compensation of a Carnot engine scales
with the absorbed heat so that the Nernst theorem should be embedded in the
statement of the second law.
-----
Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de
Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el
hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la
temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es
equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot
escala con el calor absorbido del foco caliente, de forma que el teorema de
Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into
spanish. Twocolumn format. RevTe
Embedding variables in finite dimensional models
Global problems associated with the transformation from the Arnowitt, Deser
and Misner (ADM) to the Kucha\v{r} variables are studied. Two models are
considered: The Friedmann cosmology with scalar matter and the torus sector of
the 2+1 gravity. For the Friedmann model, the transformations to the Kucha\v{r}
description corresponding to three different popular time coordinates are shown
to exist on the whole ADM phase space, which becomes a proper subset of the
Kucha\v{r} phase spaces. The 2+1 gravity model is shown to admit a description
by embedding variables everywhere, even at the points with additional symmetry.
The transformation from the Kucha\v{r} to the ADM description is, however,
many-to-one there, and so the two descriptions are inequivalent for this model,
too. The most interesting result is that the new constraint surface is free
from the conical singularity and the new dynamical equations are linearization
stable. However, some residual pathology persists in the Kucha\v{r}
description.Comment: Latex 2e, 29 pages, no figure
The physical gravitational degrees of freedom
When constructing general relativity (GR), Einstein required 4D general
covariance. In contrast, we derive GR (in the compact, without boundary case)
as a theory of evolving 3-dimensional conformal Riemannian geometries obtained
by imposing two general principles: 1) time is derived from change; 2) motion
and size are relative. We write down an explicit action based on them. We
obtain not only GR in the CMC gauge, in its Hamiltonian 3 + 1 reformulation but
also all the equations used in York's conformal technique for solving the
initial-value problem. This shows that the independent gravitational degrees of
freedom obtained by York do not arise from a gauge fixing but from hitherto
unrecognized fundamental symmetry principles. They can therefore be identified
as the long-sought Hamiltonian physical gravitational degrees of freedom.Comment: Replaced with published version (minor changes and added references
Variations on the Seventh Route to Relativity
As motivated in the full abstract, this paper further investigates Barbour,
Foster and O Murchadha (BFO)'s 3-space formulation of GR. This is based on
best-matched lapse-eliminated actions and gives rise to several theories
including GR and a conformal gravity theory. We study the simplicity postulates
assumed in BFO's work and how to weaken them, so as to permit the inclusion of
the full set of matter fields known to occur in nature.
We study the configuration spaces of gravity-matter systems upon which BFO's
formulation leans. In further developments the lapse-eliminated actions used by
BFO become impractical and require generalization. We circumvent many of these
problems by the equivalent use of lapse-uneliminated actions, which furthermore
permit us to interpret BFO's formulation within Kuchar's generally covariant
hypersurface framework. This viewpoint provides alternative reasons to BFO's as
to why the inclusion of bosonic fields in the 3-space approach gives rise to
minimally-coupled scalar fields, electromagnetism and Yang--Mills theory. This
viewpoint also permits us to quickly exhibit further GR-matter theories
admitted by the 3-space formulation. In particular, we show that the spin-1/2
fermions of the theories of Dirac, Maxwell--Dirac and Yang--Mills--Dirac, all
coupled to GR, are admitted by the generalized 3-space formulation we present.
Thus all the known fundamental matter fields can be accommodated. This
corresponds to being able to pick actions for all these theories which have
less kinematics than suggested by the generally covariant hypersurface
framework. For all these theories, Wheeler's thin sandwich conjecture may be
posed, rendering them timeless in Barbour's sense.Comment: Revtex version; Journal-ref adde
Three-dimensional simulations of the Parker instability in a uniformly rotating disk
We investigate the effects of rotation on the evolution of the Parker instability by carrying out three-dimensional numerical simulations with an isothermal magnetohydrodynamic code. These simulations extend our previous work on the nonlinear evolution of the Parker instability by J. Kim and coworkers. The initial equilibrium system is composed of exponentially stratified gas and a field (along the azimuthal direction) in a uniform gravity (along the downward vertical direction). The computational box, placed at the solar neighborhood, is set to rotate uniformly around the Galactic center with a constant angular speed. The instability has been initialized by random velocity perturbations. In the linear stage, the evolution is not much different from that without rotation, and the mixed (undular + interchange) mode regulates the system. The interchange mode induces alternating dense and rarefied regions with small radial wavelengths, while the undular mode bends the magnetic field lines in the plane of the azimuthal and vertical directions. In the nonlinear stage, flow motion overall becomes chaotic, as in the case without rotation. However, as the gas in higher positions slides down along field lines forming supersonic flows, the Coriolis force becomes important. As oppositely directed flows fall into valleys along both sides of the magnetic field lines, they experience the Coriolis force toward opposite directions, which twists the magnetic field lines there. Hence, we suggest that the Coriolis force plays a role in randomizing the magnetic field. The three-dimensional density structure formed by the instability is still sheetlike with the short dimension along the radial direction, as in the case without rotation. However, the long dimension is now slightly tilted with respect to the mean field direction. The shape of high-density regions is a bit rounder. The maximum enhancement factor of the vertical column density relative to its initial value is about 1.5, which is smaller than that in the case without rotation. We conclude that uniform rotation does not change our point of view that the Parker instability alone is not a viable mechanism for the formation of giant molecular cloudsopen252
- …