24,143 research outputs found
Attractive internal wave patterns
This paper gives background information for the fluid dynamics video on
internal wave motion in a trapezoidal tank.Comment: 2 pg, movie at two resolutions _low(Low-resolution) and
_hr(High-resolution
Attractive internal wave patterns
This paper gives background information for the fluid dynamics video on
internal wave motion in a trapezoidal tank.Comment: 2 pg, movie at two resolutions _low(Low-resolution) and
_hr(High-resolution
Model Reduction and Neural Networks for Parametric PDEs
We develop a general framework for data-driven approximation of input-output maps between infinite-dimensional spaces. The proposed approach is motivated by the recent successes of neural networks and deep learning, in combination with ideas from model reduction. This combination results in a neural network approximation which, in principle, is defined on infinite-dimensional spaces and, in practice, is robust to the dimension of finite-dimensional approximations of these spaces required for computation. For a class of input-output maps, and suitably chosen probability measures on the inputs, we prove convergence of the proposed approximation methodology. Numerically we demonstrate the effectiveness of the method on a class of parametric elliptic PDE problems, showing convergence and robustness of the approximation scheme with respect to the size of the discretization, and compare our method with existing algorithms from the literature
Well-Posedness And Accuracy Of The Ensemble Kalman Filter In Discrete And Continuous Time
The ensemble Kalman filter (EnKF) is a method for combining a dynamical model
with data in a sequential fashion. Despite its widespread use, there has been
little analysis of its theoretical properties. Many of the algorithmic
innovations associated with the filter, which are required to make a useable
algorithm in practice, are derived in an ad hoc fashion. The aim of this paper
is to initiate the development of a systematic analysis of the EnKF, in
particular to do so in the small ensemble size limit. The perspective is to
view the method as a state estimator, and not as an algorithm which
approximates the true filtering distribution. The perturbed observation version
of the algorithm is studied, without and with variance inflation. Without
variance inflation well-posedness of the filter is established; with variance
inflation accuracy of the filter, with resepct to the true signal underlying
the data, is established. The algorithm is considered in discrete time, and
also for a continuous time limit arising when observations are frequent and
subject to large noise. The underlying dynamical model, and assumptions about
it, is sufficiently general to include the Lorenz '63 and '96 models, together
with the incompressible Navier-Stokes equation on a two-dimensional torus. The
analysis is limited to the case of complete observation of the signal with
additive white noise. Numerical results are presented for the Navier-Stokes
equation on a two-dimensional torus for both complete and partial observations
of the signal with additive white noise
Identification and characterisation of 17 polymorphic candidate genes for response to parasitic nematode (Trichostrongylus tenuis) infection in red grouse (Lagopus lagopus scotica)
Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC Grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). We are grateful to Jacob Hoglund for providing willow grouse samples, Mario Roder, Keliya Bai, Marianne James, Matt Oliver, Gill Murray-Dickson, Francois Mougeot and Jesus Martınez-Padilla for help with fieldwork, and all grouse estate factors, owners and keepers, most particularly Alistair Mitchell, Shaila Rao, Christopher Murphy, Richard Cooke and Fred Taylor, for providing access to estate game larders.Peer reviewedPostprin
Cosmic Variance In the Transparency of the Intergalactic Medium After Reionization
Following the completion of cosmic reionization, the mean-free-path of
ionizing photons was set by a population of Ly-limit absorbers. As the
mean-free-path steadily grew, the intensity of the ionizing background also
grew, thus lowering the residual neutral fraction of hydrogen in ionization
equilibrium throughout the diffuse intergalactic medium (IGM). Ly-alpha photons
provide a sensitive probe for tracing the distribution of this residual
hydrogen at the end of reionization. Here we calculate the cosmic variance
among different lines-of-sight in the distribution of the mean Ly-alpha optical
depths. We find fractional variations in the effective post-reionization
optical depth that are of order unity on a scale of ~100 co-moving Mpc, in
agreement with observations towards high-redshift quasars. Significant
contributions to these variations are provided by the cosmic variance in the
density contrast on the scale of the mean-free-path for ionizing photons, and
by fluctuations in the ionizing background induced by delayed or enhanced
structure formation. Cosmic variance results in a highly asymmetric
distribution of transmission through the IGM, with fractional fluctuations in
Ly-alpha transmission that ar larger than in Ly-beta transmission.Comment: 7 pages 3 figures. Replaced with version accepted for publication in
Ap
Self-Regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-ray Luminosity Functions of Quasars
We postulate that supermassive black-holes grow in the centers of galaxies
until they unbind the galactic gas that feeds them. We show that the
corresponding self-regulation condition yields a correlation between black-hole
mass (Mbh) and galaxy velocity dispersion (sigma) as inferred in the local
universe, and recovers the observed optical and X-ray luminosity functions of
quasars at redshifts up to z~6 based on the hierarchical evolution of galaxy
halos in a Lambda-CDM cosmology. With only one free parameter and a simple
algorithm, our model yields the observed evolution in the number density of
optically bright or X-ray faint quasars between 2<z<6 across 3 orders of
magnitude in bolometric luminosity and 3 orders of magnitude in comoving
density per logarithm of luminosity. The self-regulation condition identifies
the dynamical time of galactic disks during the epoch of peak quasar activity
(z~2.5) as the origin of the inferred characteristic quasar lifetime of ~10
million years. Since the lifetime becomes comparable to the Salpeter e-folding
time at this epoch, the model also implies that the Mbh-sigma relation is a
product of feedback regulated accretion during the peak of quasar activity. The
mass-density in black-holes accreted by that time is consistent with the local
black-hole mass density of ~(0.8-6.3) times 10^5 solar masses per cubic Mpc,
which we have computed by combining the Mbh-sigma relation with the measured
velocity dispersion function of SDSS galaxies (Sheth et al.~2003). Applying a
similar self-regulation principle to supernova-driven winds from starbursts, we
find that the ratio between the black hole mass and the stellar mass of
galactic spheroids increases with redshift as (1+z)^1.5 although the Mbh-sigma
relation is redshift-independent.Comment: 10 pages, 5 figures, submitted to Ap
- …