60 research outputs found

    Ciliated hepatic foregut cyst: A report of 6 cases and a review of the English literature

    Get PDF
    BACKGROUND: Ciliated hepatic foregut cyst (CHFC) is a rare cystic lesion most commonly identified in segment 4 of the liver that arises from the embryonic foregut. The classic histologic pattern is comprised of 4 distinct layers (inner ciliated epithelial lining, smooth muscle, loose connective tissue, fibrous capsule). Although rare, cases of metaplastic and malignant epithelial lining have been described in CHFC. METHODS: We report 6 additional cases of CHFC, one of which had gastric metaplasia of the cyst lining, and review all reported cases of CHFC in the English literature. We describe the clinicopathologic analysis of 6 cases, with selective immunohistochemical analysis on 1 case with gastric metaplasia. RESULTS: Cases occurred in 4 women and 2 men (average age 55Β years, range 42 to 67Β years). Cysts ranged in size from 0.7 to 17Β cm (average 7.2Β cm) and were grossly tan-pink to white with blood-filled contents. The majority were located in segment 4 of the liver, however 2 were located in the porta hepatis. Tumor serologies (CA19-9 and/or CEA) were performed in 3 cases; 1 case demonstrated elevated CA19-9, and 2 cases had laboratory values within normal limits. All cases showed the classic histologic findings, however one case additionally had extensive gastric metaplasia. CONCLUSIONS: In conclusion, CHFC is a rare diagnostic entity that should be considered in the differential diagnosis for cystic hepatic lesions, particularly those located in segment 4 of the liver. Metaplasia and squamous carcinoma can occur, therefore complete surgical excision is the recommended treatment. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13000-015-0321-1) contains supplementary material, which is available to authorized users

    IRAK4 mediates colitis-induced tumorigenesis and chemoresistance in colorectal cancer

    Get PDF
    Aberrant activation of the NF-ΞΊB transcription factors underlies chemoresistance in various cancer types, including colorectal cancer (CRC). Targeting the activating mechanisms, particularly with inhibitors to the upstream IΞΊB kinase (IKK) complex, is a promising strategy to augment the effect of chemotherapy. However, clinical success has been limited, largely because of low specificity and toxicities of tested compounds. In solid cancers, the IKKs are driven predominantly by the Toll-like receptor (TLR)/IL-1 receptor family members, which signal through the IL-1 receptor-associated kinases (IRAKs), with isoform 4 (IRAK4) being the most critical. The pathogenic role and therapeutic value of IRAK4 in CRC have not been investigated. We found that IRAK4 inhibition significantly abrogates colitis-induced neoplasm in APCMin/+ mice, and bone marrow transplant experiments showed an essential role of IRAK4 in immune cells during neoplastic progression. Chemotherapy significantly enhances IRAK4 and NF-ΞΊB activity in CRC cells through upregulating TLR9 expression, which can in turn be suppressed by IRAK4 and IKK inhibitors, suggesting a feed-forward pathway that protects CRC cells from chemotherapy. Lastly, increased tumor phospho-IRAK4 staining or IRAK4 mRNA expression is associated with significantly worse survival in CRC patients. Our results support targeting IRAK4 to improve the effects of chemotherapy and outcomes in CRC

    Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer

    Get PDF
    Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients

    Distinct clonal identities of B-ALLs arising after lenolidomide therapy for multiple myeloma

    Get PDF
    Patients with multiple myeloma (MM) who are treated with lenalidomide rarely develop a secondary B-cell acute lymphoblastic leukemia (B-ALL). The clonal and biological relationship between these sequential malignancies is not yet clear. We identified 17 patients with MM treated with lenalidomide, who subsequently developed B-ALL. Patient samples were evaluated through sequencing, cytogenetics/fluorescence in situ hybridization (FISH), immunohistochemical (IHC) staining, and immunoglobulin heavy chain (IgH) clonality assessment. Samples were assessed for shared mutations and recurrently mutated genes. Through whole exome sequencing and cytogenetics/FISH analysis of 7 paired samples (MM vs matched B-ALL), no mutational overlap between samples was observed. Unique dominant IgH clonotypes between the tumors were observed in 5 paired MM/B-ALL samples. Across all 17 B-ALL samples, 14 (83%) had a TP53 variant detected. Three MM samples with sufficient sequencing depth (\u3e500Γ—) revealed rare cells (average of 0.6% variant allele frequency, or 1.2% of cells) with the same TP53 variant identified in the subsequent B-ALL sample. A lack of mutational overlap between MM and B-ALL samples shows that B-ALL developed as a second malignancy arising from a founding population of cells that likely represented unrelated clonal hematopoiesis caused by a TP53 mutation. The recurrent variants in TP53 in the B-ALL samples suggest a common path for malignant transformation that may be similar to that of TP53-mutant, treatment-related acute myeloid leukemia. The presence of rare cells containing TP53 variants in bone marrow at the initiation of lenalidomide treatment suggests that cellular populations containing TP53 variants expand in the presence of lenalidomide to increase the likelihood of B-ALL development

    Epstein-Barr Virus-Induced Gene 3 (EBI3): A Novel Diagnosis Marker in Burkitt Lymphoma and Diffuse Large B-Cell Lymphoma

    Get PDF
    The distinction between Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), two types of mature aggressive B-cell lymphomas that require distinct treatments, can be difficult because of forms showing features intermediate between DLBCL and BLΒ (here called BL/DLBCL). They can be discriminated by the presence of c-myc translocations characteristic of BL. However, these are not exclusive of BL and when present in DLBCL are associated with lower survival. In this study, we show that Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed among BL and DLBCL. Analysis of gene expression data from 502 cases of aggressive mature B-cell lymphomas available on Gene Expression Omnibus and immunohistochemical analysis of 184 cases of BL, BL/DLBCL or DLBCL, showed that EBI3 was not expressed in EBV-positive or -negative BL cases, whereas it was expressed by over 30% of tumoral cells in nearly 80% of DLBCL cases, independently of their subtypes. In addition, we show that c-myc overexpression represses EBI3 expression, and that DLBCL or BL/DLBCL cases with c-myc translocations have lower expression of EBI3. Thus, EBI3 immunohistochemistry could be useful to discriminate BL from DLBCL, and to identify cases of BL/DLBCL or DLBCL with potential c-myc translocations

    FTY720 Suppresses Liver Tumor Metastasis by Reducing the Population of Circulating Endothelial Progenitor Cells

    Get PDF
    Background: Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury. Methodology/Principal Findings: An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group. Conclusions/Significance: FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs. Β© 2012 Li et al.published_or_final_versio

    Tumour vascularization: sprouting angiogenesis and beyond

    Get PDF
    Tumour angiogenesis is a fast growing domain in tumour biology. Many growth factors and mechanisms have been unravelled. For almost 30Β years, the sprouting of new vessels out of existing ones was considered as an exclusive way of tumour vascularisation. However, over the last years several additional mechanisms have been identified. With the discovery of the contribution of intussusceptive angiogenesis, recruitment of endothelial progenitor cells, vessel co-option, vasculogenic mimicry and lymphangiogenesis to tumour growth, anti-tumour targeting strategies will be more complex than initially thought. This review highlights these processes and intervention as a potential application in cancer therapy. It is concluded that future anti-vascular therapies might be most beneficial when based on multimodal anti-angiogenic, anti-vasculogenic mimicry and anti-lymphangiogenic strategies

    Spatial Segregation of BMP/Smad Signaling Affects Osteoblast Differentiation in C2C12 Cells

    Get PDF
    BACKGROUND: Bone morphogenetic proteins (BMPs) are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway) and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP) production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an additional mechanism for the cell to respond to BMP in a context specific manner. Moreover, we suggest a novel Smad dependent signal cascade induced by BMP-2, which does not require endocytosis

    Peritoneal VEGF-A expression is regulated by TGF-Ξ²1 through an ID1 pathway in women with endometriosis

    Get PDF
    VEGF-A, an angiogenic factor, is increased in the peritoneal fluid of women with endometriosis. The cytokine TGF-Ξ²1 is thought to play a role in the establishment of endometriosis lesions. Inhibitor of DNA binding (ID) proteins are transcriptional targets of TGF-Ξ²1 and ID1 has been implicated in VEGF-A regulation during tumor angiogenesis. Herein, we determined whether peritoneal expression of VEGF-A is regulated by TGF-Ξ²1 through the ID1 pathway in women with endometriosis. VEGF-A was measured in peritoneal fluid by ELISA (n = 16). VEGF-A and ID1 expression was examined in peritoneal biopsies (n = 13), and primary peritoneal and immortalized mesothelial cells (MeT5A) by immunohistochemistry, qRT-PCR and ELISA. VEGF-A was increased in peritoneal fluid from women with endometriosis and levels correlated with TGF-Ξ²1 concentrations (P < 0.05). VEGF-A was immunolocalized to peritoneal mesothelium and TGF-Ξ²1 increased VEGFA mRNA (P < 0.05) and protein (P < 0.05) in mesothelial cells. ID1 was increased in peritoneum from women with endometriosis and TGF-Ξ²1 increased concentrations of ID1 mRNA (P < 0.05) in mesothelial cells. VEGF-A regulation through ID1 was confirmed by siRNA in MeT5A cells (P < 0.05). Our data supports role for ID1 in the pathophysiology of endometriosis, as an effector of TGFΞ²1 dependent upregulation of VEGF-A, and highlights a novel potential therapeutic target
    • …
    corecore