31 research outputs found

    A simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions

    Full text link
    Monte Carlo simulations of a spherical macroion, surrounded by a size-asymmetric electrolyte in the primitive model, were performed. We considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice the size of counterions), for several surface charge densities of the macrosphere. The radial distribution functions, electrostatic potential at the Helmholtz surfaces, and integrated charge are reported. We compare these simulational data with original results obtained from the Ornstein-Zernike integral equation, supplemented by the hypernetted chain/hypernetted chain (HNC/HNC) and hypernetted chain/mean spherical approximation (HNC/MSA) closures, and with the corresponding calculations using the modified Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC/HNC and HNC/MSA integral equations formalisms show good concordance with Monte Carlo "experiments", whereas the notable limitations of point-ion approaches are evidenced. Most importantly, the simulations confirm our previous theoretical predictions of the non-dominance of the counterions in the size-asymmetric spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the appearance of anomalous curvatures at the outer Helmholtz plane and the enhancement of charge reversal and screening at high colloidal surface charge densities due to the ionic size asymmetry.Comment: 11 pages, 7 figure

    A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity.

    Get PDF
    The influence of a gramicidin-like channel former on ion free energy barriers is studied using Monte Carlo simulation. The model explicitly describes the ion, the water dipoles, and the peptide carbonyls; the remaining degrees of freedom, bulk electrolyte, non-polar lipid and peptide regions, and electronic (high frequency) permittivity, are treated in continuum terms. Contributions of the channel waters and peptide COs are studied both separately and collectively. We found that if constrained to their original orientations, the COs substantially increase the cationic permeation free energy; with or without water present, CO reorientation is crucial for ion-CO interaction to lower cation free energy barriers; the translocation free energy profiles for potassium-, rubidium-, and cesium-like cations exhibit no broad barriers; the lipid-bound peptide interacts more effectively with anions than cations; anionic translocation free energy profiles exhibit well defined maxima. Using experimental data to estimate transfer free energies of ions and water from bulk electrolyte to a non-polar dielectric (continuum lipid), we found reasonable ion permeation profiles; cations bind and permeate, whereas anions cannot enter the channel. Cation selectivity arises because, for ions of the same size and charge, anions bind hydration water more strongly

    Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.

    No full text
    The continuum three-dielectric model for an aqueous ion channel pore-forming peptide-membrane system is extended to account for the finite length of the channel. We focus on the electrostatic influence that a channel-forming peptide may exert on energy barriers to ion permeation. The nonlinear dielectric behavior of channel water caused by dielectric saturation in the presence of an ion is explicitly modeled by assigning channel water a mean dielectric constant much less than that of bulk water. An exact solution of the continuum problem is formulated by approximating the dielectric behavior of bulk water, assigning it a dielectric constant of infinity. The validity of this approximation is verified by comparison with a Poisson-Boltzmann description of the electrolyte. The formal equivalence of high ionic strength and high electrolyte dielectric constant is demonstrated. We estimate limits on the reduction of the electrostatic free energy caused by ionic interaction with the channel-forming peptide. We find that even assigning this region an epsilon of 100, its influence is insufficient to lower permeation free energy barriers to values consistent with observed channel conductances. We provide estimates of the effective dielectric constant of this highly polarizable region, by comparing energy barriers computed using the continuum approach with those found from a semi-microscopic analysis of a simplified model of a gramicidin-like charge distribution. Possible ways of improving both models are discussed
    corecore