1,734 research outputs found

    Powers of sets in free groups

    Full text link
    We prove that |A^n| > c_n |A|^{[\frac{n+1}{2}]} for any finite subset A of a free group if A contains at least two noncommuting elements, where c_n>0 are constants not depending on A. Simple examples show that the order of these estimates are the best possible for each n>0.Comment: 3 page

    Comment on "Peierls Gap in Mesoscopic Ring Threated by a Magnetic Flux"

    Full text link
    In a recent letter, Yi et al. PRL 78, 3523 (1997), have considered the stability of a Charge Density Wave in a one-dimensional ring, in the presence of an Aharonov-Bohm flux. This comment shows that, in one dimension, the stability of the Charge Density Wave depends on the parity of the number of electrons in the ring. This effect is similar to the parity effect known for the persistent current in one-dimensional rings.Comment: Latex, 1 page, 2 figure

    SIC-POVMs and the Extended Clifford Group

    Full text link
    We describe the structure of the extended Clifford Group (defined to be the group consisting of all operators, unitary and anti-unitary, which normalize the generalized Pauli group (or Weyl-Heisenberg group as it is often called)). We also obtain a number of results concerning the structure of the Clifford Group proper (i.e. the group consisting just of the unitary operators which normalize the generalized Pauli group). We then investigate the action of the extended Clifford group operators on symmetric informationally complete POVMs (or SIC-POVMs) covariant relative to the action of the generalized Pauli group. We show that each of the fiducial vectors which has been constructed so far (including all the vectors constructed numerically by Renes et al) is an eigenvector of one of a special class of order 3 Clifford unitaries. This suggests a strengthening of a conjuecture of Zauner's. We give a complete characterization of the orbits and stability groups in dimensions 2-7. Finally, we show that the problem of constructing fiducial vectors may be expected to simplify in the infinite sequence of dimensions 7, 13, 19, 21, 31,... . We illustrate this point by constructing exact expressions for fiducial vectors in dimensions 7 and 19.Comment: 27 pages. Version 2 contains some additional discussion of Zauner's original conjecture, and an alternative, possibly stronger version of the conjecture in version 1 of this paper; also a few other minor improvement

    Local distinguishability of quantum states in infinite dimensional systems

    Full text link
    We investigate local distinguishability of quantum states by use of the convex analysis about joint numerical range of operators on a Hilbert space. We show that any two orthogonal pure states are distinguishable by local operations and classical communications, even for infinite dimensional systems. An estimate of the local discrimination probability is also given for some family of more than two pure states

    Number theoretic example of scale-free topology inducing self-organized criticality

    Full text link
    In this work we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.Comment: 4 pages, 3 figures. Physical Review Letters, in pres

    Classical information deficit and monotonicity on local operations

    Full text link
    We investigate classical information deficit: a candidate for measure of classical correlations emerging from thermodynamical approach initiated in [Phys. Rev. Lett 89, 180402]. It is defined as a difference between amount of information that can be concentrated by use of LOCC and the information contained in subsystems. We show nonintuitive fact, that one way version of this quantity can increase under local operation, hence it does not possess property required for a good measure of classical correlations. Recently it was shown by Igor Devetak, that regularised version of this quantity is monotonic under LO. In this context, our result implies that regularization plays a role of "monotoniser".Comment: 6 pages, revte

    Extending additivity from symmetric to asymmetric channels

    Full text link
    We prove a lemma which allows one to extend results about the additivity of the minimal output entropy from highly symmetric channels to a much larger class. A similar result holds for the maximal output pp-norm. Examples are given showing its use in a variety of situations. In particular, we prove the additivity and the multiplicativity for the shifted depolarising channel.Comment: 8 pages. This is the latest version of the first half of the original paper. The other half will appear in another pape

    Pauli Diagonal Channels Constant on Axes

    Get PDF
    We define and study the properties of channels which are analogous to unital qubit channels in several ways. A full treatment can be given only when the dimension d is a prime power, in which case each of the (d+1) mutually unbiased bases (MUB) defines an axis. Along each axis the channel looks like a depolarizing channel, but the degree of depolarization depends on the axis. When d is not a prime power, some of our results still hold, particularly in the case of channels with one symmetry axis. We describe the convex structure of this class of channels and the subclass of entanglement breaking channels. We find new bound entangled states for d = 3. For these channels, we show that the multiplicativity conjecture for maximal output p-norm holds for p=2. We also find channels with behavior not exhibited by unital qubit channels, including two pairs of orthogonal bases with equal output entropy in the absence of symmetry. This provides new numerical evidence for the additivity of minimal output entropy

    Qubit Channels Can Require More Than Two Inputs to Achieve Capacity

    Get PDF
    We give examples of qubit channels that require three input states in order to achieve the Holevo capacity.Comment: RevTex, 5 page, 4 figures
    • …
    corecore