424 research outputs found

    Stabilization of collapse and revival dynamics by a non-Markovian phonon bath

    Full text link
    Semiconductor quantum dots (QDs) have been demonstrated to be versatile candidates to study the fundamentals of light-matter interaction [1-3]. In contrast with atom optics, dissipative processes are induced by the inherent coupling to the environment and are typically perceived as a major obstacle towards stable performances in experiments and applications [4]. In this paper we show that this is not necessarily the case. In fact, the memory of the environment can enhance coherent quantum optical effects. In particular, we demonstrate that the non-Markovian coupling to an incoherent phonon bath has a stabilizing effect on the coherent QD cavity-quantum electrodynamics (cQED) by inhibiting irregular oscillations and boosting regular collapse and revival patterns. For low photon numbers we predict QD dynamics that deviate dramatically from the well-known atomic Jaynes-Cummings model. Our proposal opens the way to a systematic and deliberate design of photon quantum effects via specifically engineered solid-state environments.Comment: 5 pages, 4 figure

    The three-dimensional Anderson model of localization with binary random potential

    Full text link
    We study the three-dimensional two-band Anderson model of localization and compare our results to experimental results for amorphous metallic alloys (AMA). Using the transfer-matrix method, we identify and characterize the metal-insulator transitions as functions of Fermi level position, band broadening due to disorder and concentration of alloy composition. The appropriate phase diagrams of regions of extended and localized electronic states are studied and qualitative agreement with AMA such as Ti-Ni and Ti-Cu metallic glasses is found. We estimate the critical exponents nu_W, nu_E and nu_x when either disorder W, energy E or concentration x is varied, respectively. All our results are compatible with the universal value nu ~ 1.6 obtained in the single-band Anderson model.Comment: 9 RevTeX4 pages with 11 .eps figures included, submitted to PR

    Metal-insulator transitions in anisotropic 2d systems

    Full text link
    Several phenomena related to the critical behaviour of non-interacting electrons in a disordered 2d tight-binding system with a magnetic field are studied. Localization lengths, critical exponents and density of states are computed using transfer matrix techniques. Scaling functions of isotropic systems are recovered once the dimension of the system in each direction is chosen proportional to the localization length. It is also found that the critical point is independent of the propagation direction, and that the critical exponents for the localization length for both propagating directions are equal to that of the isotropic system (approximately 7/3). We also calculate the critical value of the scaling function for both the isotropic and the anisotropic system. It is found that the isotropic value equals the geometric mean of the two anisotropic values. Detailed numerical studies of the density of states for the isotropic system reveals that for an appreciable amount of disorder the critical energy is off the band center.Comment: 6 pages RevTeX, 6 figures included, submitted to Physical Review

    Partitioning Schemes and Non-Integer Box Sizes for the Box-Counting Algorithm in Multifractal Analysis

    Full text link
    We compare different partitioning schemes for the box-counting algorithm in the multifractal analysis by computing the singularity spectrum and the distribution of the box probabilities. As model system we use the Anderson model of localization in two and three dimensions. We show that a partitioning scheme which includes unrestricted values of the box size and an average over all box origins leads to smaller error bounds than the standard method using only integer ratios of the linear system size and the box size which was found by Rodriguez et al. (Eur. Phys. J. B 67, 77-82 (2009)) to yield the most reliable results.Comment: 10 pages, 13 figure

    Energy-level statistics at the metal-insulator transition in anisotropic systems

    Full text link
    We study the three-dimensional Anderson model of localization with anisotropic hopping, i.e. weakly coupled chains and weakly coupled planes. In our extensive numerical study we identify and characterize the metal-insulator transition using energy-level statistics. The values of the critical disorder WcW_c are consistent with results of previous studies, including the transfer-matrix method and multifractal analysis of the wave functions. WcW_c decreases from its isotropic value with a power law as a function of anisotropy. Using high accuracy data for large system sizes we estimate the critical exponent ν=1.45±0.2\nu=1.45\pm0.2. This is in agreement with its value in the isotropic case and in other models of the orthogonal universality class. The critical level statistics which is independent of the system size at the transition changes from its isotropic form towards the Poisson statistics with increasing anisotropy.Comment: 22 pages, including 8 figures, revtex few typos corrected, added journal referenc

    Multifractal analysis of the metal-insulator transition in anisotropic systems

    Full text link
    We study the Anderson model of localization with anisotropic hopping in three dimensions for weakly coupled chains and weakly coupled planes. The eigenstates of the Hamiltonian, as computed by Lanczos diagonalization for systems of sizes up to 48348^3, show multifractal behavior at the metal-insulator transition even for strong anisotropy. The critical disorder strength WcW_c determined from the system size dependence of the singularity spectra is in a reasonable agreement with a recent study using transfer matrix methods. But the respective spectrum at WcW_c deviates from the ``characteristic spectrum'' determined for the isotropic system. This indicates a quantitative difference of the multifractal properties of states of the anisotropic as compared to the isotropic system. Further, we calculate the Kubo conductivity for given anisotropies by exact diagonalization. Already for small system sizes of only 12312^3 sites we observe a rapidly decreasing conductivity in the directions with reduced hopping if the coupling becomes weaker.Comment: 25 RevTeX pages with 10 PS-figures include

    Effects of Scale-Free Disorder on the Anderson Metal-Insulator Transition

    Full text link
    We investigate the three-dimensional Anderson model of localization via a modified transfer-matrix method in the presence of scale-free diagonal disorder characterized by a disorder correlation function g(r)g(r) decaying asymptotically as r−αr^{-\alpha}. We study the dependence of the localization-length exponent ν\nu on the correlation-strength exponent α\alpha. % For fixed disorder WW, there is a critical αc\alpha_{\rm c}, such that for α<αc\alpha < \alpha_{\rm c}, ν=2/α\nu=2/\alpha and for α>αc\alpha > \alpha_{\rm c}, ν\nu remains that of the uncorrelated system in accordance with the extended Harris criterion. At the band center, ν\nu is independent of α\alpha but equal to that of the uncorrelated system. The physical mechanisms leading to this different behavior are discussed.Comment: submitted to Phys. Rev. Let

    Finite-size scaling from self-consistent theory of localization

    Full text link
    Accepting validity of self-consistent theory of localization by Vollhardt and Woelfle, we derive the finite-size scaling procedure used for studies of the critical behavior in d-dimensional case and based on the use of auxiliary quasi-1D systems. The obtained scaling functions for d=2 and d=3 are in good agreement with numerical results: it signifies the absence of essential contradictions with the Vollhardt and Woelfle theory on the level of raw data. The results \nu=1.3-1.6, usually obtained at d=3 for the critical exponent of the correlation length, are explained by the fact that dependence L+L_0 with L_0>0 (L is the transversal size of the system) is interpreted as L^{1/\nu} with \nu>1. For dimensions d\ge 4, the modified scaling relations are derived; it demonstrates incorrectness of the conventional treatment of data for d=4 and d=5, but establishes the constructive procedure for such a treatment. Consequences for other variants of finite-size scaling are discussed.Comment: Latex, 23 pages, figures included; additional Fig.8 is added with high precision data by Kramer et a

    Expression and prognostic relevance of activated extracellular-regulated kinases (ERK1/2) in breast cancer

    Get PDF
    Extracellular-regulated kinases (ERK1, ERK2) play important roles in the malignant behaviour of breast cancer cells in vitro. In our present study, 148 clinical breast cancer samples (120 cases with follow-up data) were studied for the expression of ERK1, ERK2 and their phosphorylated forms p-ERK1 and p-ERK2 by immunoblotting, and p-ERK1/2 expression in corresponding paraffin sections was analysed by immunohistochemistry. The results were correlated with established clinical and histological prognostic parameters, follow-up data and expression of seven cell-cycle regulatory proteins as well as MMP1, MMP9, PAI-1 and AP-1 transcription factors, which had been analysed before. High p-ERK1 expression as determined by immunoblots correlated significantly with a low frequency of recurrences and infrequent fatal outcome (P=0.007 and 0.008) and was an independent indicator of long relapse-free and overall survival in multivariate analysis. By immunohistochemistry, strong p-ERK staining in tumour cells was associated with early stages (P=0.020), negative nodal status (P=0.003) and long recurrence-free survival (P=0.017). In contrast, expression of the unphosphorylated kinases ERK1 and ERK2 was not associated with clinical and histological prognostic parameters, except a positive correlation with oestrogen receptor status. Comparison with the expression of formerly analysed cell-cycle- and invasion-associated proteins corroborates our conclusion that activation of ERK1 and ERK2 is not associated with enhanced proliferation and invasion of mammary carcinomas

    A Multiplatform Parallel Approach for Lattice Sieving Algorithms

    Get PDF
    Lattice sieving is currently the leading class of algorithms for solving the shortest vector problem over lattices. The computational difficulty of this problem is the basis for constructing secure post-quantum public-key cryptosystems based on lattices. In this paper, we present a novel massively parallel approach for solving the shortest vector problem using lattice sieving and hardware acceleration. We combine previously reported algorithms with a proper caching strategy and develop hardware architecture. The main advantage of the proposed approach is eliminating the overhead of the data transfer between a CPU and a hardware accelerator. The authors believe that this is the first such architecture reported in the literature to date and predict to achieve up to 8 times higher throughput when compared to a multi-core high-performance CPU. Presented methods can be adapted for other sieving algorithms hard to implement in FPGAs due to the communication and memory bottlenec
    • …
    corecore