12,196 research outputs found

    Optical conductivity and Raman scattering of iron superconductors

    Get PDF
    We discuss how to analyze the optical conductivity and Raman spectra of multi-orbital systems using the velocity and the Raman vertices in a similar way Raman vertices were used to disentangle nodal and antinodal regions in cuprates. We apply this method to iron superconductors in the magnetic and non-magnetic states, studied at the mean field level. We find that the anisotropy in the optical conductivity at low frequencies reflects the difference between the magnetic gaps at the X and Y electron pockets. Both gaps are sampled by Raman spectroscopy. We also show that the Drude weight anisotropy in the magnetic state is sensitive to small changes in the lattice structure.Comment: 14 pages, 10 figures, as accepted in Phys. Rev. B, explanations/discussion added in Secs. II, III and V

    Grasping Robot Integration and Prototyping: The GRIP Software Framework

    Get PDF

    Propagating EUV disturbances in the solar corona : two-wavelength observations

    Get PDF
    Quasi-periodic EUV disturbances simultaneously observed in 171 Ã… and 195 Ã… TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics

    Mass and Charge in Brane-World and Non-Compact Kaluza-Klein Theories in 5 Dim

    Get PDF
    In classical Kaluza-Klein theory, with compactified extra dimensions and without scalar field, the rest mass as well as the electric charge of test particles are constants of motion. We show that in the case of a large extra dimension this is no longer so. We propose the Hamilton-Jacobi formalism, instead of the geodesic equation, for the study of test particles moving in a five-dimensional background metric. This formalism has a number of advantages: (i) it provides a clear and invariant definition of rest mass, without the ambiguities associated with the choice of the parameters used along the motion in 5D and 4D, (ii) the electromagnetic field can be easily incorporated in the discussion, and (iii) we avoid the difficulties associated with the "splitting" of the geodesic equation. For particles moving in a general 5D metric, we show how the effective rest mass, as measured by an observer in 4D, varies as a consequence of the large extra dimension. Also, the fifth component of the momentum changes along the motion. This component can be identified with the electric charge of test particles. With this interpretation, both the rest mass and the charge vary along the trajectory. The constant of motion is now a combination of these quantities. We study the cosmological variations of charge and rest mass in a five-dimensional bulk metric which is used to embed the standard k = 0 FRW universes. The time variations in the fine structure "constant" and the Thomson cross section are also discussed.Comment: V2: References added, discussion extended. V3 is identical to V2, references updated. To appear in General Relativity and Gravitatio

    Cosmological Implications of a Non-Separable 5D Solution of the Vacuum Einstein Field Equations

    Full text link
    An exact class of solutions of the 5D vacuum Einstein field equations (EFEs) is obtained. The metric coefficients are found to be non-separable functions of time and the extra coordinate ll and the induced metric on ll = constant hypersurfaces has the form of a Friedmann-Robertson-Walker cosmology. The 5D manifold and 3D and 4D submanifolds are in general curved, which distinguishes this solution from previous ones in the literature. The singularity structure of the manifold is explored: some models in the class do not exhibit a big bang, while other exhibit a big bang and a big crunch. For the models with an initial singularity, the equation of state of the induced matter evolves from radiation like at early epochs to Milne-like at late times and the big bang manifests itself as a singular hypersurface in 5D. The projection of comoving 5D null geodesics onto the 4D submanifold is shown to be compatible with standard 4D comoving trajectories, while the expansion of 5D null congruences is shown to be in line with conventional notions of the Hubble expansion.Comment: 8 pages, in press in J. Math. Phy

    Negaton and Positon solutions of the soliton equation with self-consistent sources

    Full text link
    The KdV equation with self-consistent sources (KdVES) is used as a model to illustrate the method. A generalized binary Darboux transformation (GBDT) with an arbitrary time-dependent function for the KdVES as well as the formula for NN-times repeated GBDT are presented. This GBDT provides non-auto-B\"{a}cklund transformation between two KdV equations with different degrees of sources and enable us to construct more general solutions with NN arbitrary tt-dependent functions. By taking the special tt-function, we obtain multisoliton, multipositon, multinegaton, multisoliton-positon, multinegaton-positon and multisoliton-negaton solutions of KdVES. Some properties of these solutions are discussed.Comment: 13 pages, Latex, no figues, to be published in J. Phys. A: Math. Ge

    Construction and validation of a questionnaire to assess student satisfaction with mathematics learning materials

    Get PDF
    Sixth Edition Technological Ecosystems for Enhancing MulticulturalityMathematics is an essential branch for the scientific development and its study is mandatory in most university degrees. However, currently the level of academic performance and motivation of students to learn this science is not the desired one. The students can use different learning tools inside and outside the math classroom, enhancing the quality of the learning materials that are designed essentially to facilitate the learning of mathematics. The present research project aims to determine the validity and reliability of a measurement instrument that allows theassessment of the satisfaction of the students with the availablelearning materials. To fulfill the objectives of this research, the method of survey was used. A study with a quantitative approach was developed, which led to the design and validation of a questionnaire by a group of 7 experts. The validation closed after applying a pilot study with 728 students. It concluded positively, obtaining nine factors that coincide with the revision of the literature: technological quality, quality of content, visual quality, didactic significance, adequacy of content, relationship between theory and practice, involvement, contribution to learning, relevance and interaction between educational actors. The results of this questionnaire provide to the international scientific community with relevant information for the design, selection, and use of study materials in the classrooms, which will contribute to raising the levels of student engagement, and their academic performance in mathematics, secondaril

    High order magnon bound states in the quasi-one-dimensional antiferromagnet α\alpha-NaMnO2_2

    Full text link
    Here we report on the formation of two and three magnon bound states in the quasi-one-dimensional antiferromagnet α\alpha-NaMnO2_2, where the single-ion, uniaxial anisotropy inherent to the Mn3+^{3+} ions in this material provides a binding mechanism capable of stabilizing higher order magnon bound states. While such states have long remained elusive in studies of antiferromagnetic chains, neutron scattering data presented here demonstrate that higher order n>2n>2 composite magnons exist, and, specifically, that a weak three-magnon bound state is detected below the antiferromagnetic ordering transition of NaMnO2_2. We corroborate our findings with exact numerical simulations of a one-dimensional Heisenberg chain with easy-axis anisotropy using matrix-product state techniques, finding a good quantitative agreement with the experiment. These results establish α\alpha-NaMnO2_2 as a unique platform for exploring the dynamics of composite magnon states inherent to a classical antiferromagnetic spin chain with Ising-like single ion anisotropy.Comment: 5 pages, 4 figure
    • …
    corecore