2 research outputs found

    Random-cluster representation of the Blume-Capel model

    Full text link
    The so-called diluted-random-cluster model may be viewed as a random-cluster representation of the Blume--Capel model. It has three parameters, a vertex parameter aa, an edge parameter pp, and a cluster weighting factor qq. Stochastic comparisons of measures are developed for the `vertex marginal' when q∈[1,2]q\in[1,2], and the `edge marginal' when q\in[1,\oo). Taken in conjunction with arguments used earlier for the random-cluster model, these permit a rigorous study of part of the phase diagram of the Blume--Capel model

    Cluster Hybrid Monte Carlo Simulation Algorithms

    Full text link
    We show that addition of Metropolis single spin-flips to the Wolff cluster flipping Monte Carlo procedure leads to a dramatic {\bf increase} in performance for the spin-1/2 Ising model. We also show that adding Wolff cluster flipping to the Metropolis or heat bath algorithms in systems where just cluster flipping is not immediately obvious (such as the spin-3/2 Ising model) can substantially {\bf reduce} the statistical errors of the simulations. A further advantage of these methods is that systematic errors introduced by the use of imperfect random number generation may be largely healed by hybridizing single spin-flips with cluster flipping.Comment: 16 pages, 10 figure
    corecore