494 research outputs found

    Reconsidering the quantization of electrodynamics with boundary conditions and some measurable consequences

    Full text link
    We show that the commonly known conductor boundary conditions E=B=0E_{||}=B_\perp=0 can be realized in two ways which we call 'thick' and 'thin' conductor. The 'thick' conductor is the commonly known approach and includes a Neumann condition on the normal component EE_\perp of the electric field whereas for a 'thin' conductor EE_\perp remains without boundary condition. Both types describe different physics already on the classical level where a 'thin' conductor allows for an interaction between the normal components of currents on both sides. On quantum level different forces between a conductor and a single electron or a neutral atom result. For instance, the Casimir-Polder force for a 'thin' conductor is by about 13% smaller than for a 'thick' one.Comment: 22 pages, basic statement weakened, conclusions changed, misprints correcte

    Casimir force under the influence of real conditions

    Get PDF
    The Casimir force is calculated analytically for configurations of two parallel plates and a spherical lens (sphere) above a plate with account of nonzero temperature, finite conductivity of the boundary metal and surface roughness. The permittivity of the metal is described by the plasma model. It is proved that in case of the plasma model the scattering formalism of quantum field theory in Matsubara formulation underlying Lifshitz formula is well defined and no modifications are needed concerning the zero-frequency contribution. The temperature correction to the Casimir force is found completely with respect to temperature and perturbatively (up to the second order in the relative penetration depth of electromagnetic zero-point oscillations into the metal) with respect to finite conductivity. The asymptotics of low and high temperatures are presented and contributions of longitudinal and perpendicular modes are determined separately. Serving as an example, aluminium test bodies are considered showing good agreement between the obtained analytical results and previously performed numerical computations. The roughness correction is formally included and formulas are given permitting to calculate the Casimir force under the influence of all relevant factors

    Heat Kernel Expansion for Semitransparent Boundaries

    Get PDF
    We study the heat kernel for an operator of Laplace type with a δ\delta-function potential concentrated on a closed surface. We derive the general form of the small tt asymptotics and calculate explicitly several first heat kernel coefficients.Comment: 16 page

    The ground state energy of a spinor field in the background of a finite radius flux tube

    Full text link
    We develop a formalism for the calculation of the ground state energy of a spinor field in the background of a cylindrically symmetric magnetic field. The energy is expressed in terms of the Jost function of the associated scattering problem. Uniform asymptotic expansions needed are obtained from the Lippmann-Schwinger equation. The general results derived are applied to the background of a finite radius flux tube with a homogeneous magnetic field inside and the ground state energy is calculated numerically as a function of the radius and the flux. It turns out to be negative, remaining smaller by a factor of α\alpha than the classical energy of the background except for very small values of the radius which are outside the range of applicability of QED.Comment: 25 pages, 3 figure

    Electromagnetic vacuum energy for two parallel slabs in terms of surface, wave guide and photonic modes

    Full text link
    The formulation of the Lifshitz formula in terms of real frequencies is reconsidered for half spaces described by the plasma model. It is shown that besides the surface modes (for the TM polarization), and the photonic modes, also waveguide modes must be considered.Comment: some references adde

    Drude model and Lifshitz formula

    Full text link
    Since nearly 10 years, it is known that inserting the permittivity of the Drude model into the Lifshitz formula for free energy causes a violation of the third law of thermodynamics. In this paper we show that the standard Matsubara formulation for free energy contains a contribution that is non-perturbative in the relaxation parameter. We argue that the correct formula must have a perturbative expansion and conclude that the standard Matsubara formulation with the permittivity of the Drude model inserted is not correct. We trace the non-perturbative contribution in the complex frequency plane, where it shows up as a self-intersection or a bifurcation of the integration path.Comment: accepted for publication in EPJ

    Critical surface band gap of repulsive Casimir interaction between three dimensional topological insulators at finite temperature

    Full text link
    We generalize the calculation of Casimir interaction between topological insulators with opposite topological magnetoelectric polarizabilities and finite surface band gaps to finite Temperature cases. We find that finite temperature quantitatively depress the repulsive peak and enlarge the critical surface gap mcm_c for repulsive Casimir force. However the universal property mca1/2m_c a \sim 1/2 is still valid for various oscillation strength, temperature region and topological magnetoelectric polarizabilities.Comment: 7 pages, 4 figure

    Dynamical Casimir Effect in a one-dimensional uniformly contracting cavity

    Full text link
    We consider particle creation (the Dynamical Casimir effect) in a uniformly contracting ideal one-dimensional cavity non-perturbatively. The exact expression for the energy spectrum of created particles is obtained and its dependence on parameters of the problem is discussed. Unexpectedly, the number of created particles depends on the duration of the cavity contracting non-monotonously. This is explained by quantum interference of the events of particle creation which are taking place only at the moments of acceleration and deceleration of a boundary, while stable particle states exist (and thus no particles are created) at the time of contracting.Comment: 13 pages, 4 figure

    Ground State Energy of Massive Scalar Field in the Background of Finite Thickness Cosmic String

    Get PDF
    We calculate the ground state energy of a massive scalar field in the background of a cosmic string of finite thickness (Gott-Hiscock metric). Using zeta functional regularization we discuss the renormalization and the relevant heat kernel coefficients in detail. The finite (non local) part of the ground state energy is calculated in 2+1 dimensions in the approximation of a small mass density of the string. By a numerical calculation it is shown to vanish as a function of the radius of the string and of the parameter ξ\xi of the nonconformal coupling.Comment: 23 pages, Latex, 3 figures, subm. to Phys. Rev.
    corecore