1,586 research outputs found

    Symmetry and environment effects on rectification mechanisms in quantum pumps

    Get PDF
    We consider a paradigmatic model of quantum pumps and discuss its rectification properties in the framework of a symmetry analysis proposed for ratchet systems. We discuss the role of the environment in breaking time-reversal symmetry and the possibility of a finite directed current in the Hamiltonian limit of annular systems.Comment: To appear as Rapid Communication in PR

    Quantum Nondemolition Measurement of a Kicked Qubit

    Full text link
    We propose a quantum nondemolition measurement using a kicked two-state system (qubit). By tuning the waiting time between kicks to be the qubit oscillation period, the kicking apparatus performs a nondemolition measurement. While dephasing is unavoidable, the nondemolition measurement can (1) slow relaxation of diagonal density matrix elements, (2) avoid detector back-action, and (3) allow for a large signal-to-noise ratio. Deviations from the ideal behavior are studied by allowing for detuning of the waiting time, as well as finite-time, noisy pulses. The scheme is illustrated with a double-dot qubit measured by a gate-pulsed quantum point contact.Comment: 7 pages, 1 figur

    Persistent current magnification in a double quantum-ring system

    Full text link
    The electronic transport in a system of two quantum rings side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We derived analytical expressions for the conductance, density of states and the persistent current when the rings are threaded by magnetic fluxes. We found a clear manifestation of the presence of bound states in each one of those physical quantities when either the flux difference or the sum of the fluxes are zero or integer multiples of a quantum of flux. These bound states play an important role in the magnification of the persistent current in the rings. We also found that the persistent current keeps a large amplitude even for strong ring-wire coupling.Comment: 15 pages, 10 figures. Submitted to PR

    Mesoscopic fluctuations of nonlinear conductance of chaotic quantum dots

    Full text link
    The nonlinear dc conductance of a two-terminal chaotic cavity is investigated. The fluctuations of the conductance (anti)symmetric with respect to magnetic flux inversion through multichannel cavities are found analytically for arbitrary temperature, magnetic field, and interaction strength. For few-channel dots the effect of dephasing is investigated numerically. A comparison with recent experimental data is provided.Comment: 4 pages, 2 figures, v.2-notations correcte

    dc-Response of a Dissipative Driven Mesoscopic Ring

    Get PDF
    The behavior of the dc-component of the current along a quantum loop of tight-binding electrons threaded by a magnetic flux that varies linearly in time Phi_M(t)= Phi t is investigated. We analize the electron transport in different kinds of one-dimensional structures bended into a ring geometry: a clean one-dimensional metal, a chain with a two-band structure and a disordered chain. Inelastic scattering events are introduced through the coupling to a particle reservoir. We use a theoretical treatment based in Baym-Kadanoff-Keldysh non-equilibrium Green functions, which allows us to solve the problem exactly.Comment: 10 pages, 9 figures. To appear in PR

    Gap theory of rectification in ballistic three-terminal conductors

    Full text link
    We introduce a model for rectification in three-terminal ballistic conductors, where the central connecting node is modeled as a chaotic cavity. For bias voltages comparable to the Fermi energy, a strong nonlinearity is created by the opening of a gap in the transport window. Both noninteracting cavity electrons at arbitrary temperature as well as the hot electron regime are considered. Charging effects are treated within the transmission formalism using a self-consistent analysis. The conductance of the third lead in a voltage probe configuration is varied to also model inelastic effects. We find that the basic transport features are insensitive to all of these changes, indicating that the nonlinearity is robust and well suited to applications such as current rectification in ballistic systems. Our findings are in broad agreement with several recent experiments.Comment: 8 pages, 6 figure

    Time-Dependent Current Partition in Mesoscopic Conductors

    Full text link
    The currents at the terminals of a mesoscopic conductor are evaluated in the presence of slowly oscillating potentials applied to the contacts of the sample. The need to find a charge and current conserving solution to this dynamic current partition problem is emphasized. We present results for the electro-chemical admittance describing the long range Coulomb interaction in a Hartree approach. For multiply connected samples we discuss the symmetry of the admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971

    Quantum to Classical Transition of the Charge Relaxation Resistance of a Mesoscopic Capacitor

    Full text link
    We present an analysis of the effect of dephasing on the single channel charge relaxation resistance of a mesoscopic capacitor in the linear low frequency regime. The capacitor consists of a cavity which is via a quantum point contact connected to an electron reservoir and Coulomb coupled to a gate. The capacitor is in a perpendicular high magnetic field such that only one (spin polarized) edge state is (partially) transmitted through the contact. In the coherent limit the charge relaxation resistance for a single channel contact is independent of the transmission probability of the contact and given by half a resistance quantum. The loss of coherence in the conductor is modeled by attaching to it a fictitious probe, which draws no net current. In the incoherent limit one could expect a charge relaxation resistance that is inversely proportional to the transmission probability of the quantum point contact. However, such a two terminal result requires that scattering is between two electron reservoirs which provide full inelastic relaxation. We find that dephasing of a single edge state in the cavity is not sufficient to generate an interface resistance. As a consequence the charge relaxation resistance is given by the sum of one constant interface resistance and the (original) Landauer resistance. The same result is obtained in the high temperature regime due to energy averaging over many occupied states in the cavity. Only for a large number of open dephasing channels, describing spatially homogenous dephasing in the cavity, do we recover the two terminal resistance, which is inversely proportional to the transmission probability of the QPC. We compare different dephasing models and discuss the relation of our results to a recent experiment.Comment: 10 pages, 8 figure

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    Low frequency admittance of a quantum point contact

    Full text link
    We present a current and charge conserving theory for the low frequency admittance of a quantum point contact. We derive expressions for the electrochemical capacitance and the displacement current. The latter is determined by the {\em emittance} which equals the capacitance only in the limit of vanishing transmission. With the opening of channels the capacitance and the emittance decrease in a step-like manner in synchronism with the conductance steps. For vanishing reflection, the capacitance vanishes and the emittance is negative.Comment: 11 pages, revtex file, 2 ps figure
    corecore