6,134 research outputs found
CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes.
Engagement of the CD3/T cell antigen receptor complex on small, resting T cells is insufficient to trigger cell-mediated cytotoxicity or to induce a proliferative response. In the present study, we have used genetic transfection to demonstrate that interaction of the B7-BB1 B cell activation antigen with the CD28 T cell differentiation antigen costimulates cell-mediated cytotoxicity and proliferation initiated by either anti-CD2 or anti-CD3 monoclonal antibody (mAb). Moreover, a B7-negative Burkitt's lymphoma cell line that fails to stimulate an allogeneic mixed lymphocyte response is rendered a potent stimulator after transfection with B7. The mixed leukocyte reaction proliferative response against the B7 transfectant is inhibited by either anti-CD28 or B7 mAb. We also demonstrate that freshly isolated small, resting human T cells can mediate anti-CD3 or anti-CD2 mAb-redirected cytotoxicity against a murine Fc receptor-bearing mastocytoma transfected with human B7. These preexisting cytotoxic T lymphocytes in peripheral blood are present in both the CD4 and CD8 subsets, but are preferentially within the CD45RO+ "memory" population. While small, resting T cells apparently require costimulation by CD28/B7 interactions, this requirement is lost after T cell activation. Anti-CD3 initiates a cytotoxic response mediated by in vitro cultured T cell clones in the absence of B7 ligand. The existence of functional cytolytic T cells in the small, resting T cell population may be advantageous in facilitating rapid responses to immune challenge
Optimal entanglement manipulation via coherent-state transmission
We derive an optimal bound for arbitrary entanglement manipulation based on
the transmission of a pulse in coherent states over a lossy channel followed by
local operations and unlimited classical communication (LOCC). This stands on a
theorem to reduce LOCC via a local unital qubit channel to local filtering. We
also present an optimal protocol based on beam splitters and a quantum
nondemolition (QND) measurement on photons. Even if we replace the QND
measurement with photon detectors, the protocol outperforms known entanglement
generation schemes.Comment: 5 pages, 1 figur
Black hole thermodynamics from simulations of lattice Yang-Mills theory
We report on lattice simulations of 16 supercharge SU(N) Yang-Mills quantum
mechanics in the 't Hooft limit. Maldacena duality conjectures that in this
limit the theory is dual to IIA string theory, and in particular that the
behavior of the thermal theory at low temperature is equivalent to that of
certain black holes in IIA supergravity. Our simulations probe the low
temperature regime for N <= 5 and the intermediate and high temperature regimes
for N <= 12. We observe 't Hooft scaling and at low temperatures our results
are consistent with the dual black hole prediction. The intermediate
temperature range is dual to the Horowitz-Polchinski correspondence region, and
our results are consistent with smooth behavior there. We include the Pfaffian
phase arising from the fermions in our calculations where appropriate.Comment: 4 pages, 4 figure
Diffusion of single long polymers in fixed and low density matrix of obstacles confined to two dimensions
Diffusion properties of a self-avoiding polymer embedded in regularly
distributed obstacles with spacing a=20 and confined in two dimensions is
studied numerically using the extended bond fluctuation method which we have
developed recently. We have observed for the first time to our knowledge, that
the mean square displacement of a center monomer exhibits four
dynamical regimes, i.e., with ,
3/8, 3/4, and 1 from the shortest to longest time regimes. The exponents in the
second and third regimes are well described by segmental diffusion in the
``self-avoiding tube''. In the fourth (free diffusion) regime, we have
numerically confirmed the relation between the reptation time and the
number of segments .Comment: 7 pages, 11 figure
NMR characterization of spin-1/2 alternating antiferromagnetic chains in the high-pressure phase of (VO)2P2O7
Local-susceptibility measurements via the NMR shifts of P and V
nuclei in the high-pressure phase of (VO)PO confirmed the
existence of a unique alternating antiferromagnetic chain with a zero-field
spin gap of 34 K. The P nuclear spin-lattice relaxation rate scales with
the uniform spin susceptibility below about 15 K which shows that the
temperature dependence of both the static and dynamical spin susceptibilities
becomes identical at temperatures not far below the spin-gap energy.Comment: 6 pages, 5 figures; To be published in J. Phys. Condens. Matte
B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.
Dendritic cells comprise a system of highly efficient antigen-presenting cells involved in the initiation of T cell responses. Herein, we investigated the role of the CD28 pathway during alloreactive T cell proliferation induced by dendritic-Langerhans cells (D-Lc) generated by culturing human cord blood CD34+ progenitor cells with granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. In addition to expressing CD80 (B7/BB1), a subset of D-Lc expressed B70/B7-2. Binding of the CTLA4-Ig fusion protein was completely inhibited by a combination of monoclonal antibodies (mAbs) against CD80 and B70/B7-2, indicating the absence of expression of a third ligand for CD28/CTLA-4. It is interesting to note that mAbs against CD86 completely prevented the binding of CTLA4-Ig in the presence of mAbs against CD80 and bound to a B70/B7-2-transfected fibroblast cell line, demonstrating that the B70/B7-2 antigen is identical to CD86. CD28 triggering was essential during D-Lc-induced alloreaction as it was inhibited by mAbs against CD28 (9 out of 11 tested). However, none of six anti-CD80 mAbs demonstrated any activity on the D-Lc-induced alloreaction, though some were previously described as inhibitory in assays using CD80-transfected cell lines. In contrast, a mAb against CD86 (IT-2) was found to suppress the D-Lc-dependent alloreaction by 70%. This inhibitory effect was enhanced to > or = 90% when a combination of anti-CD80 and anti-CD86 mAbs was used. The present results demonstrate that D-Lc express, in addition to CD80, the other ligand for CTLA-4, CD86 (B70/B7-2), which plays a primordial role during D-Lc-induced alloreaction
- …