3,990 research outputs found

    Diffusion-Limited One-Species Reactions in the Bethe Lattice

    Full text link
    We study the kinetics of diffusion-limited coalescence, A+A-->A, and annihilation, A+A-->0, in the Bethe lattice of coordination number z. Correlations build up over time so that the probability to find a particle next to another varies from \rho^2 (\rho is the particle density), initially, when the particles are uncorrelated, to [(z-2)/z]\rho^2, in the long-time asymptotic limit. As a result, the particle density decays inversely proportional to time, \rho ~ 1/kt, but at a rate k that slowly decreases to an asymptotic constant value.Comment: To be published in JPCM, special issue on Kinetics of Chemical Reaction

    The equivalent nonlinearity for a nonlinear system with dither

    Get PDF
    AbstractGiven a single loop nonlinear control system. The problem of constructing a dither signal in order to obtain a desired equivalent nonlinearity is considered. It is assumed that the nonlinearity may be described by a kth order polynomial. For this case it is shown that in general k different levels for the dither signal are necessary

    Exactly solvable models through the empty interval method, for more-than-two-site interactions

    Full text link
    Single-species reaction-diffusion systems on a one-dimensional lattice are considered, in them more than two neighboring sites interact. Constraints on the interaction rates are obtained, that guarantee the closedness of the time evolution equation for En(t)E_n(t)'s, the probability that nn consecutive sites are empty at time tt. The general method of solving the time evolution equation is discussed. As an example, a system with next-nearest-neighbor interaction is studied.Comment: 19 pages, LaTeX2

    A Method of Intervals for the Study of Diffusion-Limited Annihilation, A + A --> 0

    Full text link
    We introduce a method of intervals for the analysis of diffusion-limited annihilation, A+A -> 0, on the line. The method leads to manageable diffusion equations whose interpretation is intuitively clear. As an example, we treat the following cases: (a) annihilation in the infinite line and in infinite (discrete) chains; (b) annihilation with input of single particles, adjacent particle pairs, and particle pairs separated by a given distance; (c) annihilation, A+A -> 0, along with the birth reaction A -> 3A, on finite rings, with and without diffusion.Comment: RevTeX, 13 pages, 4 figures, 1 table. References Added, and some other minor changes, to conform with final for

    Wigner Surmise For Domain Systems

    Full text link
    In random matrix theory, the spacing distribution functions p(n)(s)p^{(n)}(s) are well fitted by the Wigner surmise and its generalizations. In this approximation the spacing functions are completely described by the behavior of the exact functions in the limits s->0 and s->infinity. Most non equilibrium systems do not have analytical solutions for the spacing distribution and correlation functions. Because of that, we explore the possibility to use the Wigner surmise approximation in these systems. We found that this approximation provides a first approach to the statistical behavior of complex systems, in particular we use it to find an analytical approximation to the nearest neighbor distribution of the annihilation random walk
    corecore