435 research outputs found

    A path integral derivation of χy\chi_y-genus

    Full text link
    The formula for the Hirzebruch χy\chi_y-genus of complex manifolds is a consequence of the Hirzebruch-Riemann-Roch formula. The classical index formulae for Todd genus, Euler number, and Signature correspond to the case when the complex variable y=y= 0, -1, and 1 respectively. Here we give a {\it direct} derivation of this nice formula based on supersymmetric quantum mechanics.Comment: 5 page

    Equivariance, BRST and Superspace

    Full text link
    The structure of equivariant cohomology in non-abelian localization formulas and topological field theories is discussed. Equivariance is formulated in terms of a nilpotent BRST symmetry, and another nilpotent operator which restricts the BRST cohomology onto the equivariant, or basic sector. A superfield formulation is presented and connections to reducible (BFV) quantization of topological Yang-Mills theory are discussed.Comment: (24 pages, report UU-ITP and HU-TFT-93-65

    Quantum cohomology of flag manifolds and Toda lattices

    Full text link
    We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice.Comment: 35 page

    Localization and Diagonalization: A review of functional integral techniques for low-dimensional gauge theories and topological field theories

    Full text link
    We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological field theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we first introduce the necessary mathematical background (Euler classes of vector bundles, equivariant cohomology, topology of Lie groups), and describe the finite dimensional integration formulae. We then discuss some applications to path integrals and give an overview of the relevant literature. The applications we deal with include supersymmetric quantum mechanics, cohomological field theories, phase space path integrals, and two-dimensional Yang-Mills theory.Comment: 72 pages (60 A4 pages), LaTeX (to appear in the Journal of Mathematical Physics Special Issue on Functional Integration (May 1995)

    Measures on Banach Manifolds and Supersymmetric Quantum Field Theory

    Full text link
    We show how to construct measures on Banach manifolds associated to supersymmetric quantum field theories. These measures are mathematically well-defined objects inspired by the formal path integrals appearing in the physics literature on quantum field theory. We give three concrete examples of our construction. The first example is a family ΌPs,t\mu_P^{s,t} of measures on a space of functions on the two-torus, parametrized by a polynomial PP (the Wess-Zumino-Landau-Ginzburg model). The second is a family \mu_\cG^{s,t} of measures on a space \cG of maps from ¶1\P^1 to a Lie group (the Wess-Zumino-Novikov-Witten model). Finally we study a family ΌM,Gs,t\mu_{M,G}^{s,t} of measures on the product of a space of connection s on the trivial principal bundle with structure group GG on a three-dimensional manifold MM with a space of \fg-valued three-forms on M.M. We show that these measures are positive, and that the measures \mu_\cG^{s,t} are Borel probability measures. As an application we show that formulas arising from expectations in the measures \mu_\cG^{s,1} reproduce formulas discovered by Frenkel and Zhu in the theory of vertex operator algebras. We conjecture that a similar computation for the measures ΌM,SU(2)s,t,\mu_{M,SU(2)}^{s,t}, where MM is a homology three-sphere, will yield the Casson invariant of M.M.Comment: Minor correction

    Topics on D-brane charges with B-fields

    Full text link
    In this review we show how K-theory classifies RR-charges in type II string theory and how the inclusion of the B-field modifies the general structure leading to the twisted K-groups. Our main purpose is to give an expository account of the physical relevance of K-theory and, in order to make it, we consider different points of view: processes of tachyon condensation, cancellation of global anomalies and gauge fixings. As a field to test the proposals of K-theory, we concentrate on the study of the D6-brane, now seen as a non-abelian monopole.Comment: 63 pages, no figures. To appear in the special issue of Int. J. Geom. Meth. Mod. Phys., v.1, N4 (August 2004

    N=2 Topological Yang-Mills Theory on Compact K\"{a}hler Surfaces

    Get PDF
    We study a topological Yang-Mills theory with N=2N=2 fermionic symmetry. Our formalism is a field theoretical interpretation of the Donaldson polynomial invariants on compact K\"{a}hler surfaces. We also study an analogous theory on compact oriented Riemann surfaces and briefly discuss a possible application of the Witten's non-Abelian localization formula to the problems in the case of compact K\"{a}hler surfaces.Comment: ESENAT-93-01 & YUMS-93-10, 34pages: [Final Version] to appear in Comm. Math. Phy

    Light-Ray Radon Transform for Abelianin and Nonabelian Connection in 3 and 4 Dimensional Space with Minkowsky Metric

    Get PDF
    We consider a real manifold of dimension 3 or 4 with Minkovsky metric, and with a connection for a trivial GL(n,C) bundle over that manifold. To each light ray on the manifold we assign the data of paralel transport along that light ray. It turns out that these data are not enough to reconstruct the connection, but we can add more data, which depend now not from lines but from 2-planes, and which in some sence are the data of parallel transport in the complex light-like directions, then we can reconstruct the connection up to a gauge transformation. There are some interesting applications of the construction: 1) in 4 dimensions, the self-dual Yang Mills equations can be written as the zero curvature condition for a pair of certain first order differential operators; one of the operators in the pair is the covariant derivative in complex light-like direction we studied. 2) there is a relation of this Radon transform with the supersymmetry. 3)using our Radon transform, we can get a measure on the space of 2 dimensional planes in 4 dimensional real space. Any such measure give rise to a Crofton 2-density. The integrals of this 2-density over surfaces in R^4 give rise to the Lagrangian for maps of real surfaces into R^4, and therefore to some string theory. 4) there are relations with the representation theory. In particular, a closely related transform in 3 dimensions can be used to get the Plancerel formula for representations of SL(2,R).Comment: We add an important discussion part, establishing the relation of our Radon transform with the self-dual Yang-Mills, string theory, and the represntation theory of the group SL(2,R

    Fivebranes and 4-manifolds

    Get PDF
    We describe rules for building 2d theories labeled by 4-manifolds. Using the proposed dictionary between building blocks of 4-manifolds and 2d N=(0,2) theories, we obtain a number of results, which include new 3d N=2 theories T[M_3] associated with rational homology spheres and new results for Vafa-Witten partition functions on 4-manifolds. In particular, we point out that the gluing measure for the latter is precisely the superconformal index of 2d (0,2) vector multiplet and relate the basic building blocks with coset branching functions. We also offer a new look at the fusion of defect lines / walls, and a physical interpretation of the 4d and 3d Kirby calculus as dualities of 2d N=(0,2) theories and 3d N=2 theories, respectivelyComment: 81 pages, 18 figures. v2: misprints corrected, clarifications and references added. v3: additions and corrections about lens space theory, 4-manifold gluing, smooth structure

    Topological quantum field theory and invariants of graphs for quantum groups

    Full text link
    On basis of generalized 6j-symbols we give a formulation of topological quantum field theories for 3-manifolds including observables in the form of coloured graphs. It is shown that the 6j-symbols associated with deformations of the classical groups at simple even roots of unity provide examples of this construction. Calculational methods are developed which, in particular, yield the dimensions of the state spaces as well as a proof of the relation, previously announced for the case of SUq(2)SU_q(2) by V.Turaev, between these models and corresponding ones based on the ribbon graph construction of Reshetikhin and Turaev.Comment: 38 page
    • 

    corecore