40 research outputs found
Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay
Volterra series representation of nonlinear systems is a mathematical analysis tool that has been successfully applied in many areas of biological sciences, especially in the area of modeling of hemodynamic response. In this study, we explored the possibility of using discrete time Meixner basis functions (MBFs) in estimating Volterra kernels of nonlinear systems. The problem of estimation of Volterra kernels can be formulated as a multiple regression problem and solved using least squares estimation. By expanding system kernels with some suitable basis functions, it is possible to reduce the number of parameters to be estimated and obtain better kernel estimates. Thus far, Laguerre basis functions have been widely used in this framework. However, research in signal processing indicates that when the kernels have a slow initial onset or delay, Meixner functions, which can be made to have a slow start, are more suitable in terms of providing a more accurate approximation to the kernels. We, therefore, compared the performance of Meixner functions, in kernel estimation, to that of Laguerre functions in some test cases that we constructed and in a real experimental case where we studied photoreceptor responses of photoreceptor cells of adult fruitflies (Drosophila melanogaster). Our results indicate that when there is a slow initial onset or delay, MBF expansion provides better kernel estimates
Covert Waking Brain Activity Reveals Instantaneous Sleep Depth
The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep
Fly Photoreceptors Encode Phase Congruency
More than five decades ago it was postulated that sensory neurons detect and selectively enhance behaviourally relevant features of natural signals. Although we now know that sensory neurons are tuned to efficiently encode natural stimuli, until now it was not clear what statistical features of the stimuli they encode and how. Here we reverse-engineer the neural code of Drosophila photoreceptors and show for the first time that photoreceptors exploit nonlinear dynamics to selectively enhance and encode phase-related features of temporal stimuli, such as local phase congruency, which are invariant to changes in illumination and contrast. We demonstrate that to mitigate for the inherent sensitivity to noise of the local phase congruency measure, the nonlinear coding mechanisms of the fly photoreceptors are tuned to suppress random phase signals, which explains why photoreceptor responses to naturalistic stimuli are significantly different from their responses to white noise stimuli
Unsupervised assessment of microarray data quality using a Gaussian mixture model
<p>Abstract</p> <p>Background</p> <p>Quality assessment of microarray data is an important and often challenging aspect of gene expression analysis. This task frequently involves the examination of a variety of summary statistics and diagnostic plots. The interpretation of these diagnostics is often subjective, and generally requires careful expert scrutiny.</p> <p>Results</p> <p>We show how an unsupervised classification technique based on the Expectation-Maximization (EM) algorithm and the naïve Bayes model can be used to automate microarray quality assessment. The method is flexible and can be easily adapted to accommodate alternate quality statistics and platforms. We evaluate our approach using Affymetrix 3' gene expression and exon arrays and compare the performance of this method to a similar supervised approach.</p> <p>Conclusion</p> <p>This research illustrates the efficacy of an unsupervised classification approach for the purpose of automated microarray data quality assessment. Since our approach requires only unannotated training data, it is easy to customize and to keep up-to-date as technology evolves. In contrast to other "black box" classification systems, this method also allows for intuitive explanations.</p
Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
WOS: 000227241200011PubMed ID: 15374860Motivation: A serious limitation in microarray analysis is the unreliability of the data generated from low signal intensities. Such data may produce erroneous gene expression ratios and cause unnecessary validation or post-analysis follow-up tasks. Therefore, the elimination of unreliable signal intensities will enhance reproducibility and reliability of gene expression ratios produced from microarray data. In this study, we applied fuzzy c-means (FCM) and normal mixture modeling (NMM) based classification methods to separate microarray data into reliable and unreliable signal intensity populations. Results: We compared the results of FCM classification with those of classification based on NMM. Both approaches were validated against reference sets of biological data consisting of only true positives and true negatives. We observed that both methods performed equally well in terms of sensitivity and specificity. Although a comparison of the computation times indicated that the fuzzy approach is computationally more efficient, other considerations support the use of NMM for the reliability analysis of microarray data
An analysis of port state control inspections related to the ISPS Code
The ISPS Code came into effect on the 1st of July 2004. The overall objectives of the Code are to establish an international framework involving co-operation between contracting governments, government agencies, local administrations and the shipping industry to detect maritime security threats and take pro-active measures against potential terrorist attacks against ships and/or port facilities which are the vital instruments of the international trade
Nonlinear analysis of heart rate variability
23rd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society -- OCT 25-28, 2001 -- ISTANBUL, TURKEYWOS: 000178871900439This article reports nonlinear analysis of ECG R-R interval time-series obtained from healthy individuals and some cardiac patients. The R-R interval time-series data from 6 healthy individuals and 3 cardiac patients were transformed into multidimensional phase-space vectors by time-delay embedding. The largest Lyapunov exponent and correlation dimension (CD) were calculated. Nonlinearity was tested by comparing the CDs obtained from the original data with those obtained from surrogate data sets. Results are discussed with reference to results obtained in previous studies.Natl Sci Fdn, TUBITAK, Sci & Tech Res Ctr Turkey, ISIK Univ, COMNET, EREL Techno Grp, GUZEL SANATLAR Printinghouse, JOHNSON&JOHNSON Med, PFIZER, SIEMENS Med, TURKCELL Iletism Hizmetler A S, ALSTOM Elect Ltd Co, GANTEK Technol & SUN Microsyst, TURCOM Co Gr