10 research outputs found

    Environment simulator for studying automatic crop farming

    Get PDF
    Agricultural machines capable of utilizing variable rate application technology are tackling spatial variability in agricultural fields.  Agricultural field robots are the next step in technology, robots which are capable of utilizing sensor and actuating technologies without human contact and operate only areas of interest.  However, agricultural field robots are still under research.  Robots are just one part of the next generation of crop farming having more advanced tools to do the work which currently requires humans.  The next generation of crop farming, in the vision of the authors, is based on automation, which incorporates stationary and moving sensors systems, robots, model based decision making, automated operation planning which adapts to spatial variability according to the measurements as well as to weather conditions.  This article presents a top-down approach of automated crop farming using simulation, trying to cover all the component parts on a fully automated farm.  In the article, the developed simulation platform is presented as well as sample simulation results.  The environment simulator is based on crop growth models, weed growth models, soil models, spatial variation generation and weather statistics.  Models for the environment were found in literature and were tailored and tuned to fit the simulation purposes, to form a collection of models.  The collection of models was evaluated by using sensitivity analysis.  Furthermore, a full scale scenario was simulated over one season, incorporating 9000 spatial cells in five fields of a farm.   Keywords: robots, crop growth models, soil water models, decision making, operation plannin

    Automated contact time apparatus and measurement procedure for bubble-particle interaction analysis

    No full text
    The novel Automated Contact Time Apparatus (ACTA) presented in this paper serves as a diagnostic tool that allows the detection of changes in bubble-particle attachment probability and therefore floatability caused by alterations in the chemical environment and particle properties. The apparatus consists of six identical capillaries where bubbles with defined size are produced simultaneously in a measurement chamber. The bubbles at the needle tips are placed in contact with the submerged particle bed for specific time periods, controlled with the help of automatic actuators. The advantage of the instrument is that hundreds of bubble-particle contacts can be measured automatically within a short time period. Microscopy pictures of each measured bubble are taken while recording the movement of the bubble before, during and after contact with the solid particles. The recorded pictures can be used to determine the actual bubble size and its corresponding deviation, and to detect the attachment of particles. The attached particles are collected in a detachable chamber for subsequent characterization. Furthermore, the device is portable and can be taken to the mineral processing plants for quick evaluation of particle-bubble attachment efficiency with particles and process water sampled directly from real processes.Peer reviewe

    Light induced transformations of small nitroso compounds in low temperature rare gas matrices

    No full text
    corecore