61 research outputs found

    Partial regularity and smooth topology-preserving approximations of rough domains

    Get PDF
    For a bounded domain Ω⊂Rm,m≄2,\Omega\subset\mathbb{R}^m, m\geq 2, of class C0C^0, the properties are studied of fields of `good directions', that is the directions with respect to which ∂Ω\partial\Omega can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of ∂Ω\partial\Omega, in terms of which a corresponding flow can be defined. Using this flow it is shown that Ω\Omega can be approximated from the inside and the outside by diffeomorphic domains of class C∞C^\infty. Whether or not the image of a general continuous field of good directions (pseudonormals) defined on ∂Ω\partial\Omega is the whole of Sm−1\mathbb{S}^{m-1} is shown to depend on the topology of Ω\Omega. These considerations are used to prove that if m=2,3m=2,3, or if Ω\Omega has nonzero Euler characteristic, there is a point P∈∂ΩP\in\partial\Omega in the neighbourhood of which ∂Ω\partial\Omega is Lipschitz. The results provide new information even for more regular domains, with Lipschitz or smooth boundaries.Comment: Final version appeared in Calc. Var PDE 56, Issue 1, 201

    Liquid crystal defects in the Landau-de Gennes theory in two dimensions-beyond the one-constant approximation

    Get PDF
    We consider the two-dimensional Landau-de Gennes energy with several elastic constants, subject to general kk-radially symmetric boundary conditions. We show that for generic elastic constants the critical points consistent with the symmetry of the boundary conditions exist only in the case k=2k=2. In this case we identify three types of radial profiles: with two, three of full five components and numerically investigate their minimality and stability depending on suitable parameters. We also numerically study the stability properties of the critical points of the Landau-de Gennes energy and capture the intricate dependence of various qualitative features of these solutions on the elastic constants and the physical regimes of the liquid crystal system

    Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals

    Get PDF
    We study a singular nonlinear ordinary differential equation on intervals {[}0, R) with R <= +infinity, motivated by the Ginzburg-Landau models in superconductivity and Landau-de Gennes models in liquid crystals. We prove existence and uniqueness of positive solutions under general assumptions on the nonlinearity. Further uniqueness results for sign-changing solutions are obtained for a physically relevant class of nonlinearities. Moreover, we prove a number of fine qualitative properties of the solution that are important for the study of energetic stability

    Orientability and energy minimization in liquid crystal models

    Full text link
    Uniaxial nematic liquid crystals are modelled in the Oseen-Frank theory through a unit vector field nn. This theory has the apparent drawback that it does not respect the head-to-tail symmetry in which nn should be equivalent to -nn. This symmetry is preserved in the constrained Landau-de Gennes theory that works with the tensor Q=s(n⊗n−13Id)Q=s\big(n\otimes n- \frac{1}{3} Id\big).We study the differences and the overlaps between the two theories. These depend on the regularity class used as well as on the topology of the underlying domain. We show that for simply-connected domains and in the natural energy class W1,2W^{1,2} the two theories coincide, but otherwise there can be differences between the two theories, which we identify. In the case of planar domains we completely characterise the instances in which the predictions of the constrained Landau-de Gennes theory differ from those of the Oseen-Frank theory

    Energy Dissipation and Regularity for a Coupled Navier-Stokes and Q-Tensor System

    Full text link
    We study a complex non-newtonian fluid that models the flow of nematic liquid crystals. The fluid is described by a system that couples a forced Navier-Stokes system with a parabolic-type system. We prove the existence of global weak solutions in dimensions two and three. We show the existence of a Lyapunov functional for the smooth solutions of the coupled system and use the cancellations that allow its existence to prove higher global regularity, in dimension two. We also show the weak-strong uniqueness in dimension two

    Early Detection, Diagnosis and Intervention Services for Young Children with Autism Spectrum Disorder in the European Union (ASDEU): Family and Professional Perspectives

    Get PDF
    Early services for ASD need to canvas the opinions of both parents and professionals. These opinions are seldom compared in the same research study. This study aims to ascertain the views of families and professionals on early detection, diagnosis and intervention services for young children with ASD. An online survey compiled and analysed data from 2032 respondents across 14 European countries (60.9% were parents; 39.1% professionals). Using an ordinal scale from 1 to 7, parents’ opinions were more negative (mean = 4.6; SD 2.2) compared to those of professionals (mean = 4.9; SD 1.5) when reporting satisfaction with services. The results suggest services should take into account child’s age, delays in accessing services, and active stakeholders’ participation when looking to improve services
    • 

    corecore