23 research outputs found
Recommended from our members
MGS accelerometer data analysis with the LMD GCM
Mars Global Surveyor aerobreaking phases, required to
achieve its mapping orbit, have yielded vertical profiles
of thermospheric densities, scale heights and temperatures
covering a broad range of local times, seasons and
spatial coordinates [Keating et al. 1998, 2001]. Phase
I covered local times from 11 to 16 h (assuming 24
"martian hours” per martian day or sols), with a latitude
coverage of approximately 40deg to 60deg N. Seasons
observed during this phase were centered around winter
solstice and altitudes of periapsis range from 115 to
135 km. The altitudes for Phase II were lower, with a
minimum around 100 km and a maximum around 120.
Martian spring was the season covered during this phase
and the local time was between 15 and 16 h. The latitude
covered by Phase II, however, was more extense
than that seen during Phase I, with a coverage from 60deg N
to basically the South Pole
Recommended from our members
Towards a global model of the martian atmosphere
In an effort to continuously improve the capabilities of the Martian atmospheric predictions at LMD, the GCM has been extended into thermospheric heights thus creating the first model to self-consistently couple the lower and upper
regions of the Martian atmosphere. The behaviour of
the Martian thermosphere is strongly influenced by
lower atmospheric processes and has complex dynamics.
Such a fully coupled model will certainly aid in the preparation of future missions and on the analysis of future high altitude data, as well as serve as a base for the simulation of ionospheric processes, escape, etc
Recommended from our members
Modeling of the general circulation with the LMD-AOPP-IAA GCM: Update on model design and comparison with observations
The LMD-AOPP GCM is developed conjointly by LMD in Paris and AOPP in Oxford, with the collaboration of
IAA in Granada for the physical processes specific to the upper atmosphere. The collaboration between the
two teams is based on the use of two different dynamical core (gridpoint at LMD, spectral at AOPP), which
allow us to estimate the likely uncertainty arising from certain types of modeling errors. Similarly, we use
different schemes to compute tracer transport, etc. The work has benefited from support from ESA (since 1995)
and CNES (since 2000). Within that context, the GCMs are used to produce a Martian climate 'database' which
is used by more than 30 teams around the world for mission design and scientific studies (see Bingham et al.,
this issue and Lewis et al., 1999). The baseline version of the GCM is described in detail in Forget et al. (1999). Here we describe the recent improvement and design changes since this publication. Compared to this previous version, the new GCM covers a wider range of altitude, from 0 to 120km in the vertical, it uses improved topography and thermal inertia surface
maps from Mars Global Surveyor (MGS), and includes a new 'dust scenario' to describe the distribution of airborne dust in the atmosphere
Recommended from our members
The Mars Climate Database
The Mars Climate Database (MCD) [1] is a database of statistics describing the climate and environment of the Martian atmosphere. It was constructed directly on the basis of output from mulitannual integrations of two general circulation models (GCMs)developed by Laboratoire de Météorologie Dynamique du CNRS, France, the University of Oxford, UK, and Instituto de Astrofisica de Andalucia, Spain, with support from the European Space Agency (ESA) and Centre National d–Etudes Spatiales (CNES). A description of the MCD is given along with a comparison between spacecraft observations of Mars and results predicted at similar locations and times in the MCD.
The MCD can be used as a tool for mission planning and has been applied to prepare for several missions in Europe and the USA. It also provides information for mission design specialists on the mean state and variability of the Martian environment from the surface to above 120km. The GCMs on which the database is founded, include a set of physical parameterizations (radiative transfer in the visible and thermal infrared ranges, turbulent mixing, condensation-sublimation of CO2, thermal conduction in
the soil and representation of gravity waves) and two
different codes for the representation of large scale
dynamics: a spectral code for the AOPP version and
a grid-point code for the LMD version. The GCMs correctly reproduce the main meteorological features of Mars, as observed by the Mariner 9 and Viking orbiters, the Viking landers, and Mars Global Surveyor (MGS). As well as the standard statistical measures for mission design studies, the MCD includes a novel representation of large-scale variability, using empirical eigenfunctions derived from an
analysis of the full simulations, and small-scale variability based on parameterizations of processes such
as gravity wave propagation. The database allows the user to choose from 5 dust storm scenarios including a best guess, default scenario, deduced from recent MGS observations, an upper boundary for an atmosphere without dust storms, as observed by Viking the landers, and a clear, cold, lower boundary scenario, as observed by Phobos 2 and from Earth. The full version of the MCD is available on CDROM (for UNIX systems and PCs) and is also
accessible through an interactive WWW interface at
http://www-mars.lmd.jussieu.fr/
Vertical dust mixing and the interannual variations in the Mars thermosphere
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94815/1/jgre2303.pd
Upper atmosphere of Mars up to 120 km: Mars Global Surveyor accelerometer data analysis with the LMD general circulation model
Mars Global Surveyor (MGS) aerobraking accelerometer density measurements are analyzed with the use of the general circulation model (GCM) at the Laboratoire de Météorologie Dynamique (LMD). MGS constant altitude density data are used, obtaining longitudinal wavelike structures at fixed local times which appear to be dominated by low zonal wave number harmonics. Comparisons with simulated data for different seasons and latitudinal bands at constant altitude are performed. Excellent agreement is obtained between the simulated and observational data for low latitudes, with accuracy in both mean and zonal structure. Higher latitudes show a reduction in agreement between GCM results and MGS data. Comparisons that result in good agreement with the observational data allow for the study of wave composition in the MGS data. In particular, the excellent agreement between the simulations and the data obtained at 115 km during areocentric longitude Ls ≈ 65° allows the extraction of the major contributors to the signature, with the eastward propagating diurnal waves of wave numbers one to three being the major players. Significant contributions are also obtained for eastward propagating semidiurnal waves of wave numbers two, three, and five and diurnal wave number five. A sensitivity study is performed to delineate the effects of the near-IR tidal forcing of the upper atmosphere on the wave content at those heights. Simulations without this forcing yield reduced amplitudes for diurnal eastward propagating waves two and three along with a more latitudinally symmetric response for these two components as well as for diurnal eastward propagating wave number one
A ground‐to‐exosphere Martian general circulation model: 2. Atmosphere during solstice conditions—Thermospheric polar warming
International audienc
A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures
International audienc