38 research outputs found

    Associations between Organochlorine Contaminant Concentrations and Clinical Health Parameters in Loggerhead Sea Turtles from North Carolina, USA

    Get PDF
    Widespread and persistent organochlorine (OC) contaminants, such as polychlorinated biphenyls (PCBs) and pesticides, are known to have broad-ranging toxicities in wildlife. In this study we investigated, for the first time, their possible health effects on loggerhead sea turtles (Caretta caretta). Nonlethal fat biopsies and blood samples were collected from live turtles for OC contaminant analysis, and concentrations were compared with clinical health assessment data, including hematology, plasma chemistry, and body condition. Concentrations of total PCBs (∑PCBs), ∑DDTs, ∑chlordanes, dieldrin, and mirex were determined in 44 fat biopsies and 48 blood samples. Blood concentrations of ∑chlordanes were negatively correlated with red blood cell counts, hemoglobin, and hematocrit, indicative of anemia. Positive correlations were observed between most classes of OC contaminants and white blood cell counts and between mirex and ∑TCDD-like PCB concentrations and the heterophil:lymphocyte ratio, suggesting modulation of the immune system. All classes of OCs in the blood except dieldrin were correlated positively with aspartate aminotransferase (AST) activity, indicating possible hepatocellular damage. Mirex and ∑TCDD-like PCB blood concentrations were negatively correlated with alkaline phosphatase (ALP) activity. Significant correlations to levels of certain OC contaminant classes also suggested possible alteration of protein (↑blood urea nitrogen, ↓albumin:globulin ratio), carbohydrate (↓glucose), and ion (↑sodium, ↓magnesium) regulation. These correlations suggest that OC contaminants may be affecting the health of loggerhead sea turtles even though sea turtles accumulate lower concentrations of OCs compared with other wildlife

    Genetic Evidence Highlights Potential Impacts of By-Catch to Cetaceans

    Get PDF
    Incidental entanglement in fishing gear is arguably the most serious threat to many populations of small cetaceans, judging by the alarming number of captured animals. However, other aspects of this threat, such as the potential capture of mother-offspring pairs or reproductive pairs, could be equally or even more significant but have rarely been evaluated. Using a combination of demographic and genetic data we provide evidence that i) Franciscana dolphin pairs that are potentially reproductive and mother-offspring pairs form temporal bonds, and ii) are entangled simultaneously. Our results highlight potential demographic and genetic impacts of by-catch to cetacean populations: the joint entanglement of mother-offspring or reproductive pairs, compared to random individuals, might exacerbate the demographic consequences of by-catch, and the loss of groups of relatives means that significant components of genetic diversity could be lost together. Given the social nature of many odontocetes (toothed cetaceans), we suggest that these potential impacts could be rather general to the group and therefore by-catch could be more detrimental than previously considered

    Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major

    Get PDF
    To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Praziquantel degradation in marine aquarium water

    No full text
    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a “bath” to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure maximum drug administration

    Prevalence of Sarcocystis sp. in stranded Atlantic white-sided dolphins (Lagenorhynchus acutus)

    No full text
    In January 1998 and 1999, two mass strandings of dolphins occurred in Wellfleet, Massachusetts. The strandings were composed of 97 and 53 animals, respectively. Tissues from 35 Atlantic white-sided dolphins (Lagenorhynchus acutus) from the 1998 stranding and 52 from the 1999 stranding were examined histologically. In the 1998 stranding, unidentified protozoal tissue cysts were seen in skeletal muscle from 11 of 28 (39%) dolphins. In addition, two dolphins had a protozoal tissue cyst in cardiac muscle. In the 1999 stranding, nine of 23 (39%) dolphins had the same protozoal tissue cysts in skeletal muscle. The identification of these protozoal tissue cysts as Sarcocystis sp. was confirmed by light and transmission electron microscopy. The high prevalence of sarcocysts in these dolphins suggests that they are likely intermediate hosts for previously undescribed Sarcocystis spp. The ultrastructure of the sarcocyst walls suggests that more than one species of Sarcocystis are present in dolphins
    corecore