25 research outputs found
Polydendrocytes Display Large Lineage Plasticity following Focal Cerebral Ischemia
Polydendrocytes (also known as NG2 glial cells) constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS) that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial
Phosphorylation of GFAP is associated with injury in the neonatal pig hypoxic-ischemic brain
Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in the astrocyte cytoskeleton that plays an important role in the structure and function of the cell. GFAP can be phosphorylated at six serine (Ser) or threonine (Thr) residues but little is known about the role of GFAP phosphorylation in physiological and pathophysiological states. We have generated antibodies against two phosphorylated GFAP (pGFAP) proteins: p8GFAP, where GFAP is phosphorylated at Ser-8 and p13GFAP, where GFAP is phosphorylated at Ser-13. We examined p8GFAP and p13GFAP expression in the control neonatal pig brain and at 24 and 72 h after an hypoxic-ischemic (HI) insult. Immunohistochemistry demonstrated pGFAP expression in astrocytes with an atypical cytoskeletal morphology, even in control brains. Semi-quantitative western blotting revealed that p8GFAP expression was significantly increased at 24 h post-insult in HI animals with seizures in frontal, parietal, temporal and occipital cortices. At 72 h post-insult, p8GFAP and p13GFAP expression were significantly increased in HI animals with seizures in brain regions that are vulnerable to cellular damage (cortex and basal ganglia), but no changes were observed in brain regions that are relatively spared following an HI insult (brain stem and cerebellum). Increased pGFAP expression was associated with poor neurological outcomes such as abnormal encephalography and neurobehaviour, and increased histological brain damage. Phosphorylation of GFAP may play an important role in astrocyte remodelling during development and disease and could potentially contribute to the plasticity of the central nervous system
The Increased Activity of TRPV4 Channel in the Astrocytes of the Adult Rat Hippocampus after Cerebral Hypoxia/Ischemia
The polymodal transient receptor potential vanilloid 4 (TRPV4) channel, a member of the TRP channel family, is a calcium-permeable cationic channel that is gated by various stimuli such as cell swelling, low pH and high temperature. Therefore, TRPV4-mediated calcium entry may be involved in neuronal and glia pathophysiology associated with various disorders of the central nervous system, such as ischemia. The TRPV4 channel has been recently found in adult rat cortical and hippocampal astrocytes; however, its role in astrocyte pathophysiology is still not defined. In the present study, we examined the impact of cerebral hypoxia/ischemia (H/I) on the functional expression of astrocytic TRPV4 channels in the adult rat hippocampal CA1 region employing immunohistochemical analyses, the patch-clamp technique and microfluorimetric intracellular calcium imaging on astrocytes in slices as well as on those isolated from sham-operated or ischemic hippocampi. Hypoxia/ischemia was induced by a bilateral 15-minute occlusion of the common carotids combined with hypoxic conditions. Our immunohistochemical analyses revealed that 7 days after H/I, the expression of TRPV4 is markedly enhanced in hippocampal astrocytes of the CA1 region and that the increasing TRPV4 expression coincides with the development of astrogliosis. Additionally, adult hippocampal astrocytes in slices or cultured hippocampal astrocytes respond to the TRPV4 activator 4-alpha-phorbol-12,-13-didecanoate (4ฮฑPDD) by an increase in intracellular calcium and the activation of a cationic current, both of which are abolished by the removal of extracellular calcium or exposure to TRP antagonists, such as Ruthenium Red or RN1734. Following hypoxic/ischemic injury, the responses of astrocytes to 4ฮฑPDD are significantly augmented. Collectively, we show that TRPV4 channels are involved in ischemia-induced calcium entry in reactive astrocytes and thus, might participate in the pathogenic mechanisms of astroglial reactivity following ischemic insult
Distinct Expression/Function of Potassium and Chloride Channels Contributes to the Diverse Volume Regulation in Cortical Astrocytes of GFAP/EGFP Mice
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced greenโfluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K+ and Clโ channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Clโ co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Clโ channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K2P channels
The inhibitor of volume-regulated anion channels DCPIB activates TREK potassium channels in cultured astrocytes
BACKGROUND AND PURPOSE:
The ethacrynic acid derivative, 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) is considered to be a specific and potent inhibitor of volume-regulated anion channels (VRACs). In the CNS, DCPIB was shown to be neuroprotective through mechanisms principally associated to its action on VRACs. We hypothesized that DCPIB could also regulate the activity of other astroglial channels involved in cell volume homeostasis.
EXPERIMENTAL APPROACH:
Experiments were performed in rat cortical astrocytes in primary culture and in hippocampal astrocytes in situ. The effect of DCPIB was evaluated by patch-clamp electrophysiology and immunocytochemical techniques. Results were verified by comparative analysis with recombinant channels expressed in COS-7 cells.
KEY RESULTS:
In cultured astrocytes, DCPIB promoted the activation of a K(+) conductance mediated by two-pore-domain K(+) (K(2P) ) channels. The DCPIB effect occluded that of arachidonic acid, which activates K(2P) channels K(2P) 2.1 (TREK-1) and K(2P) 10.1 (TREK-2) in cultured astrocytes. Immunocytochemical analysis suggests that cultured astrocytes express K(2P) 2.1 and K(2P) 10.1 proteins. Moreover, DCPIB opened recombinant K(2P) 2.1 and K(2P) 10.1 expressed in heterologous system. In brain slices, DCPIB did not augment the large background K(+) conductance in hippocampal astrocytes, but caused an increment in basal K(+) current of neurons.
CONCLUSION AND IMPLICATIONS:
Our results indicate that the neuroprotective effect of DCPIB could be due, at least in part, to activation of TREK channels. DCPIB could be used as template to build new pharmacological tools able to increase background K(+) conductance in astroglia and neuronal cells