173 research outputs found

    The Chern-Simons diffusion rate in strongly coupled N=4 SYM plasma in an external magnetic field

    Full text link
    We calculate the Chern-Simons diffusion rate in a strongly coupled N=4 SUSY Yang-Mills plasma in the presence of a constant external U(1)RU(1)_R magnetic flux via the holographic correspondence. Due to the strong interactions between the charged fields and non-Abelian gauge fields, the external Abelian magnetic field affects the thermal Yang-Mills dynamics and increases the diffusion rate, regardless of its strength. We obtain the analytic results for the Chern-Simons diffusion rate both in the weak and strong magnetic field limits. In the latter limit, we show that the diffusion rate scales as B×T2B\times T^2 and this can be understood as a result of a dynamical dimensional reduction.Comment: 10 pages, 1 figure, typos corrected, comments adde

    Magnetic-field Induced Screening Effect and Collective Excitations

    Full text link
    We explicitly construct the fermion propagator in a magnetic field background B to take the lowest Landau-level approximation. We analyze the energy and momentum dependence in the polarization tensor and discuss the collective excitations. We find there appear two branches of collective modes in one of two transverse gauge particles; one represents a massive and attenuated gauge particle and the other behaves similar to the zero sound at finite density.Comment: 5 pages, 3 figures; references on the zero sound added and typos correcte

    Chiral magnetic wave at finite baryon density and the electric quadrupole moment of quark-gluon plasma in heavy ion collisions

    Full text link
    Chiral Magnetic Wave (CMW) is a gapless collective excitation of quark-gluon plasma in the presence of external magnetic field that stems from the interplay of Chiral Magnetic (CME) and Chiral Separation Effects (CSE); it is composed by the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider CMW at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the "poles" of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the "equator" acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v2(π+)<v2(π−)v_2(\pi^+) < v_2(\pi^-), and estimate the magnitude of the effect.Comment: 4 pages, 3 figure

    Dynamics of the Chiral Magnetic Effect in a weak magnetic field

    Full text link
    We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a field configuration of parallel (chromo)electric and (chromo)magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect induces an electromagnetic current along this perpendicular magnetic field, which we will compute using linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed (chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be easily extended to more general situations. The results are useful for investigating the chiral magnetic effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte

    Electromagnetic field evolution in relativistic heavy-ion collisions

    Full text link
    The hadron string dynamics (HSD) model is generalized to include the creation and evolution of retarded electromagnetic fields as well as the influence of the magnetic and electric fields on the quasiparticle propagation. The time-space structure of the fields is analyzed in detail for non-central Au+Au collisions at sNN=\sqrt{s_{NN}}=200 GeV. It is shown that the created magnetic field is highly inhomogeneous but in the central region of the overlapping nuclei it changes relatively weakly in the transverse direction. For the impact parameter b=b=10 fm the maximal magnetic field - perpendicularly to the reaction plane - is obtained of order eBy/mπ2∼eB_y/m_\pi^2\sim5 for a very short time ∼\sim 0.2 fm/c, which roughly corresponds to the time of a maximal overlap of the colliding nuclei. We find that at any time the location of the maximum in the eByeB_y distribution correlates with that of the energy density of the created particles. In contrast, the electric field distribution, being also highly inhomogeneous, has a minimum in the center of the overlap region. Furthermore, the field characteristics are presented as a function of the collision energy and the centrality of the collisions. To explore the effect of the back reaction of the fields on hadronic observables a comparison of HSD results with and without fields is exemplified. Our actual calculations show no noticeable influence of the electromagnetic fields - created in heavy-ion collisions - on the effect of the electric charge separation with respect to the reaction plane.Comment: 17 pages, 22 figures, title changed by editor, accepted for PR

    Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background

    Full text link
    We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of eBeB considered here, namely eB=30mπ2eB=30 m_\pi^2 (that is, B≈6×1015B \approx 6\times 10^{15} Tesla). The amount of split that we measure is, at this value of eBeB, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available Lattice data.Comment: 12 pages, 6 figures, RevTeX 4-1 style. Some reference added. Some typos corrected. To appear on Physical Review

    Human breast tissue cancer diagnosis by Raman spectroscopy

    Get PDF
    Abstract. Differences between Raman spectra of normal, malignant and benign tissues have been recorded and analyzed as a method for the early detection of cancer. To the best of our knowledge, this is one of the most statistically reliable research (67 patients) on Raman spectroscopy-based diagnosis of breast cancers among the world women population. The paper demonstrates that Raman spectroscopy is a promising new tool for real-time diagnosis of tissue abnormalities

    Chiral Magnetic Effect on the Lattice

    Full text link
    We review recent progress on the lattice simulations of the chiral magnetic effect. There are two different approaches to analyze the chiral magnetic effect on the lattice. In one approach, the charge density distribution or the current fluctuation is measured under a topological background of the gluon field. In the other approach, the topological effect is mimicked by the chiral chemical potential, and the induced current is directly measured. Both approaches are now developing toward the exact analysis of the chiral magnetic effect.Comment: to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Lattice QCD Simulations in External Background Fields

    Full text link
    We discuss recent results and future prospects regarding the investigation, by lattice simulations, of the non-perturbative properties of QCD and of its phase diagram in presence of magnetic or chromomagnetic background fields. After a brief introduction to the formulation of lattice QCD in presence of external fields, we focus on studies regarding the effects of external fields on chiral symmetry breaking, on its restoration at finite temperature and on deconfinement. We conclude with a few comments regarding the effects of electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
    • …
    corecore