213 research outputs found
Multihop relay techniques for communication range extension in near-field magnetic induction communication systems
In this paper, multihop relaying in RF-based com munications and near field magnetic induction communication (NFMIC) is discussed. Three multihop relay strategies for NFMIC are proposed: Non Line of Sight Magnetic Induction Relay (NLoS-MI Relay), Non Line of Sight Master/Assistant Magnetic Induction Relay1 (NLoS-MAMI Relay1) and Non Line of Sight Master/Assistant Magnetic Induction Relay2 (NLoSMAMI Relay2). In the first approach only one node contributes to the communication, while in the other two techniques (which are based on a master-assistant strategy), two relaying nodes are employed. This paper shows that these three techniques can be used to overcome the problem of dead spots within a body area network and extend the communication range without increasing the transmission power and the antenna size or decreasing receiver sensitivity. The impact of the separation distance between the nodes on the achievable RSS and channel data rate is evaluated for the three techniques. It is demonstrated that the technique which is most effective depends on the specific network topology. Optimum selection of nodes as relay master and assistant based on the location of the nodes is discussed. The paper also studies the impact of the quality factor on achievable data rate. It is shown that to obtain the highest data rate, the optimum quality factor needs to be determined for each proposed cooperative communication method. © 2013 ACADEMY PUBLISHER
Intelligent hybrid cheapest cost and mobility optimization RAT selection approaches for heterogeneous wireless networks
The evolution of wireless networks has led to the deployment of different Radio Access Technologies (RATs) such as UMTS Terrestrial Radio Access Network (UTRAN), Long Term Evolution (LTE), Wireless Local Area Network (WLAN) and Mobile Worldwide Interoperability for Microwave Access (WiMAX) which are integrated through a common platform. Common Radio Resource Management (CRRM) was proposed to manage radio resource utilization in heterogeneous wireless networks and to provide the required Quality of Service (QoS) for allocated calls. RAT selection algorithms are an integral part of the CRRM algorithms. Their role is to decide, when a new or Vertical Handover (VHO) call is requested, which of the available RATs is most suitable to fit the need of the incoming call and when to admit them. This paper extends our earlier work on the proposed intelligent mobility optimization and proposes an intelligent hybrid cheapest cost RAT selection approach which aims to increase users' satisfaction by allocation users that are looking for cheapest cost connections to a RAT that offers the cheapest cost of service. A comparison for the performance of centralized load-balancing, proposed and distributed cheapest cost and mobility optimization algorithms is presented. Simulation results show that the proposed intelligent algorithms perform better than the centralized load-balancing and the distributed algorithms. © 2014 Academy Publisher
Performance analysis of the intelligent mobility optimization CRRM approach using a markovian chain model
Due to the increasing demand of wireless services, mobile technology has rapidly progressed towards the fourth generation (4G) networking paradigm. This generation will be heterogeneous in nature and it can be achieved through the integration of different Radio Access Technologies (RATs) over a common platform. Common Radio Resource Management (CRRM) was proposed to manage radio resource utilization in heterogeneous wireless networks and to provide required Quality of Service (QoS) for allocated calls. RAT selection algorithms are an integral part of the CRRM algorithms. Their role is to decide, when a new or Vertical Handover (VHO) call is requested, which of the available RATs is most suitable to fit the need of the incoming call and when to admit them. This paper extends our earlier work on the proposed intelligent hybrid mobility optimization RAT selection approach which allocates users in high mobility to the most suitable RAT and proposes an analytical presentation of the proposed approach in a multidimensional Markov chain model. A comparison for the performance of centralized load-balancing, distributed and the proposed intelligent mobility optimization algorithms is presented in terms of new calls blocking probability, VHO calls dropping probability, users' satisfactions probability, average networks load and average system throughput. Simulation and analytical results show that the proposed algorithm performs better than the centralized loadbalancing and distributed algorithms. © 2014 ACADEMY PUBLISHER
A review of routing protocols in wireless body area networks
Recent technological advancements in wireless communication, integrated circuits and Micro-Electro-Mechanical Systems (MEMs) has enabled miniaturized, low-power, intelligent, invasive/ non-invasive micro and nano-technology sensor nodes placed in or on the human body for use in monitoring body function and its immediate environment referred to as Body Area Networks (BANs). BANs face many stringent requirements in terms of delay, power, temperature and network lifetime which need to be taken into serious consideration in the design of different protocols. Since routing protocols play an important role in the overall system performance in terms of delay, power consumption, temperature and so on, a thorough study on existing routing protocols in BANs is necessary. Also, the specific challenges of BANs necessitates the design of new routing protocols specifically designed for BANs. This paper provides a survey of existing routing protocols mainly proposed for BANs. These protocols are further classified into five main categories namely, temperature based, cross-layer, cluster based, cost-effective and QoS-based routing, where each protocol is described under its specified category. Also, comparison among routing protocols in each category is given. © 2013 ACADEMY PUBLISHER
Low complexity interference aware distributed resource allocation for multi-cell OFDMA cooperative relay networks
In this paper we focus on the subcarrier allocation for the uplink OFDMA based cooperative relay networks. Multiple cells were considered, each composed of a single base station (destination), multiple amplify and forward (AF) relay stations and multiple subscriber stations (sources). The effects of inter-cell interference (ICI) have been considered to optimize the subcarrier allocation with low complexity. The optimization problem aims to maximize the sum rate of all sources and at the same time maintain the fairness among them. Full channel state information (CSI) is assumed to be available at the base station. In the proposed algorithm the subcarrier allocation is performed in three steps; firstly the subcarriers are allocated to the Relay Stations (RSs) by which the received ICI on each RS is minimized. Then, the pre-allocated subcarriers are allocated to subscribers to achieve their individual rate requirements. Finally the remaining subcarriers are allocated to subscribers with the best channel condition to maximize the total sum of their data rates. The results show that the proposed algorithm significantly reduces the complexity with almost the same achievable rate of the optimal allocation in a single cell case. In case of multi-cell, the proposed algorithm outperforms the conventional algorithm in terms of total network achievable data rate and overall network complexity. ©2010 IEEE
Blockchain for IoT: The challenges and a way forward
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved Bitcoin has revolutionized the decentralized payment system by excluding the need for a trusted third party, reducing the transaction (TX) fee and time involved in TX confirmation as compared to a conventional banking system. The underlying technology of Bitcoin is Blockchain, which was initially designed for financial TXs only. However, due to its decentralized architecture, fault tolerance and cryptographic security benefits such as user anonymity, data integrity and authentication, researchers and security analysts around the world are focusing on the Blockchain to resolve security and privacy issues of IoT. But at the same time, default limitations of Blockchain, such as latency in transaction confirmation, scalability concerning Blockchain size and network expansion, lack of IoT-centric transaction validation rules, the absence of IoT-focused consensus protocols and insecure device integration are required to be addressed before it can be used securely and efficiently in an IoT environment. Therefore, in this paper we analyze some of the existing consensus protocols used in various Blockchain-based applications, with a focus on investigating significant limitations in TX (Transaction) validation and consensus mechanism that make them inappropriate to be implemented in Blockchain-based IoT systems. We also propose a way forward to address these issues
A new strategy to improve proactive route updates in mobile ad hoc networks
This paper presents two new route update strategies for performing proactive route discovery in mobile ad hoc networks (MANETs). The first strategy is referred to as minimum displacement update routing (MDUR). In this strategy, the rate at which route updates are sent into the network is controlled by how often a node changes its location by a required distance. The second strategy is called minimum topology change update (MTCU). In this strategy, the route updating rate is proportional to the level of topology change each node experiences. We implemented MDUR and MTCU on top of the fisheye state routing (FSR) protocol and investigated their performance by simulation. The simulations were performed in a number of different scenarios, with varied network mobility, density, traffic, and boundary. Our results indicate that both MDUR and MTCU produce significantly lower levels of control overhead than FSR and achieve higher levels of throughput as the density and the level of traffic in the network are increased
Error exponent of amplify and forward relay networks in presence of I.I.D. interferers
© 2014 IEEE. In this paper, we derive the random coding error exponent of amplify-and-forward (AF) relay networks in presence of arbitrary number of independent and identically distributed (i.i.d.) interferers both at the relay and the destination. Multiuser networks are common examples of interference limited networks. We derive the ergodic capacity of the network and present simulation results on the performance of the network where we compare the capacity and error exponent performance of interference limited networks with noise limited networks. Numerical results show that noise limited networks outperform interference limited networks even when only a very few interferers exist in the network
Soil moisture remote sensing using SIW cavity based metamaterial perfect absorber
Continuous and accurate sensing of water content in soil is an essential and useful measure in the agriculture industry. Traditional sensors developed to perform this task suffer from limited lifetime and also need to be calibrated regularly. Further, maintenance, support, and deployment of these sensors in remote environments provide additional challenges to the use of conventional soil moisture sensors. In this paper, a metamaterial perfect absorber (MPA) based soil moisture sensor is introduced. The ability of MPAs to absorb electromagnetic signals with near 100% efficiency facilitates the design of highly accurate and low-profile radio frequency passive sensors. MPA based sensor can be fabricated from highly durable materials and can therefore be made more resilient than traditional sensors. High resolution sensing is achieved through the creation of physical channels in the substrate integrated waveguide (SIW) cavity. The proposed sensor does not require connection for both electromagnetic signals or for adding a testing sample. Importantly, an external power supply is not needed, making the MPA based sensor the perfect solution for remote and passive sensing in modern agriculture. The proposed MPA based sensor has three absorption bands due to the various resonance modes of the SIW cavity. By changing the soil moisture level, the absorption peak shifts by 10 MHz, 23.3 MHz, and 60 MHz, which is correlated with the water content percentage at the first, second and third absorption bands, respectively. Finally, a 6×6 cell array with a total size of 312mm×312mm has been fabricated and tested. A strong correlation between measurement and simulation results validates the design procedure
Blockchain's adoption in IoT: The challenges, and a way forward
© 2018 Elsevier Ltd The underlying technology of Bitcoin is blockchain, which was initially designed for financial value transfer only. Nonetheless, due to its decentralized architecture, fault tolerance and cryptographic security benefits such as pseudonymous identities, data integrity and authentication, researchers and security analysts around the world are focusing on the blockchain to resolve security and privacy issues of IoT. However, presently, not much work has been done to assess blockchain's viability for IoT and the associated challenges. Hence, to arrive at intelligible conclusions, this paper carries out a systematic study of the peculiarities of the IoT environment including its security and performance requirements and progression in blockchain technologies. We have identified the gaps by mapping the security and performance benefits inferred by the blockchain technologies and some of the blockchain-based IoT applications against the IoT requirements. We also discovered some practical issues involved in the integration of IoT devices with the blockchain. In the end, we propose a way forward to resolve some of the significant challenges to the blockchain's adoption in IoT
- …