30,850 research outputs found

    Effect of topology on dynamics of knots in polymers under tension

    Full text link
    We use computer simulations to compare the dynamical behaviour of torus and even-twist knots in polymers under tension. The knots diffuse through a mechanism similar to reptation. Their friction coefficients grow linearly with average knot length for both knot types. For similar complexity, however, the torus knots diffuse faster than the even twist knots. The knot-length auto-correlation function exhibits a slow relaxation time that can be linked to a breathing mode. Its timescale depends on knot type, being typically longer for torus than for even-twist knots. These differences in dynamical behaviour are interpreted in terms of topological features of the knots.Comment: 6 pages, 8 figure

    Complex dynamics of knotted filaments in shear flow

    Full text link
    Coarse-grained simulations are used to demonstrate that knotted filaments in shear flow at zero Reynolds number exhibit remarkably rich dynamic behaviour. For stiff filaments that are weakly deformed by the shear forces, the knotted filaments rotate like rigid objects in the flow. But away from this regime the interplay between between shear forces and the flexibility of the filament leads to intricate regular and chaotic modes of motion that can be divided into distinct families. The set of accessible mode families depends to first order on a dimensionless number that relates the filament length, the elastic modulus, the friction per unit length and the shear rate.Comment: 6 pages, 6 figure

    Outbursts of Young Stellar Objects

    Full text link
    We argue that the outbursts of the FU Orionis stars occur on timescales which are much longer than expected from the standard disc instability model with \alpha_{c} \gtrsim 10^{-3}. The outburst, recurrence, and rise times are consistent with the idea that the accretion disc in these objects is truncated at a radius R_{i} \sim 40 \rsun. In agreement with a number of previous authors we suggest that the inner regions of the accretion discs in FU Ori objects are evacuated by the action of a magnetic propeller anchored on the central star. We develop an analytic solution for the steady state structure of an accretion disc in the presence of a central magnetic torque, and present numerical calculations to follow its time evolution. These calculations confirm that a recurrence time that is consistent with observations can be obtained by selecting appropriate values for viscosity and magnetic field strength.Comment: 13 pages, 7 figures, accepted by MNRA

    The steady-state structure of accretion discs in central magnetic fields

    Full text link
    We develop a new analytic solution for the steady-state structure of a thin accretion disc under the influence of a magnetic field that is anchored to the central star. The solution takes a form similar to that of Shakura and Sunyaev and tends to their solution as the magnetic moment of the star tends to zero. As well as the Kramer's law case, we obtain a solution for a general opacity. The effects of varying the mass transfer rate, spin period and magnetic field of the star as well as the opacity model applied to the disc are explored for a range of objects. The solution depends on the position of the magnetic truncation radius. We propose a new approach for the identification of the truncation radius and present an analytic expression for its position.Comment: 11 pages, 7 figures, accepted by MNRA

    Orbits and origins of the young stars in the central parsec of the galaxy

    Get PDF
    We present new proper motions from the 10 m Keck telescopes for a puzzling population of massive, young stars located within a parsec of the supermassive black hole at the Galactic Center. Our proper motion measurements have uncertainties of only 0.07 mas yr^(−1) (3 km s^(−1) ), which is ≳7 times better than previous proper motion measurements for these stars, and enables us to measure accelerations as low as 0.2 mas yr^(−2) (7 km s^(−1) yr^(−1) ). These measurements, along with stellar line-of-sight velocities from the literature, constrain the true orbit of each individual star and allow us to directly test the hypothesis that the massive stars reside in two stellar disks as has been previously proposed. Analysis of the stellar orbits reveals only one disk of young stars using a method that is capable of detecting disks containing at least 7 stars. The detected disk contains 50% (38 of 73) of the young stars, is inclined by ~115° from the plane of the sky, and is oriented at a position angle of ∌100° East of North. The on-disk and off-disk populations have similar K-band luminosity functions and radial distributions that decrease at larger radii as ∝ r^(−2). The disk has an out-of-the-disk velocity dispersion of 28±6 km s^(−1) , which corresponds to a half-opening angle of 7°±2° , and several candidate disk members have eccentricities greater than 0.2. Our findings suggest that the young stars may have formed in situ but in a more complex geometry than a simple thin circular disk

    Indian Law: The Pre-Emption Doctrine and Colonias De Santa Fe

    Get PDF

    Spectroscopic signatures related to a sunquake

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved.. The presence of flare-related acoustic emission (sunquakes (SQs)) in some flares, and only in specific locations within the flaring environment, represents a severe challenge to our current understanding of flare energy transport processes. In an attempt to contribute to understanding the origins of SQs we present a comparison of new spectral observations from Hinode's EUV imaging Spectrometer (EIS) and the Interface Region Imaging Spectrograph (IRIS) of the chromosphere, transition region, and corona above an SQ, and compare them to the spectra observed in a part of the flaring region with no acoustic signature. Evidence for the SQ is determined using both time-distance and acoustic holography methods, and we find that unlike many previous SQ detections, the signal is rather dispersed, but that the time-distance and 6 and 7 mHz sources converge at the same spatial location. We also see some evidence for different evolution at different frequencies, with an earlier peak at 7 mHz than at 6 mHz. Using EIS and IRIS spectroscopic measurements we find that in this location, at the time of the 7 mHz peak the spectral emission is significantly more intense, shows larger velocity shifts and substantially broader profiles than in the location with no SQ, and there is a good correlation between blueshifted, hot coronal, hard X-ray (HXR), and redshifted chromospheric emission, consistent with the idea of a strong downward motion driven by rapid heating by nonthermal electrons and the formation of chromospheric shocks. Exploiting the diagnostic potential of the Mg ii triplet lines, we also find evidence for a single large temperature increase deep in the atmosphere, which is consistent with this scenario. The time of the 6 mHz and time-distance peak signal coincides with a secondary peak in the energy release process, but in this case we find no evidence of HXR emission in the quake location, instead finding very broad spectral lines, strongly shifted to the red, indicating the possible presence of a significant flux of downward propagating Alfvén waves
    • 

    corecore