25 research outputs found

    Development of Catalytic Technologies for Purification of Gases from Hydrogen Sulfide Based on Direct Selective Catalytic Oxidation of H2S to Elemental Sulfur

    Get PDF
    In the Boreskov Institute of Catalysis in cooperation with specialists of All-Russian Institute of Hydrocarbons Raw Materials novel methods of purification of fossil fuels based on oxidation of hydrogen sulfide to elemental sulfur have been developed. In this paper the results of laboratory and pilot plant testing of the technologies are presented

    Control of Ni/Ce1-xMxOy Catalyst Properties Via the Selection of Dopant M = Gd, La, Mg. Part 2. Catalytic Activity

    Get PDF
    To elucidate the role of support composition in autothermal reforming of ethanol (ATR of C2H5OH), a series of Ni catalysts (Ni content 2–15 wt.%) supported on different ceria-based oxides (Ce1-xGdxOy, Ce1-xLaxOy and Ce1-xMgxOy; x = 0.1–0.9) were prepared. The synthetized materials were tested in ATR of ethanol at 200–700 °C. It was established that supports themselves show catalytic activity in ATR of C2H5OH and provide 10–15% yield of H2 at 700 °C. Upon the increase of Ni content from 2 to 15 wt.% the temperature of 100% ethanol conversion decreases from 700 tо 300 °С, hydrogen yield increases from 25 to 60%, the inhibition of С2-С3 by-products formation, as well as the promotion of decomposition of acetaldehyde occur. The enhancement of catalyst performance in ATR of C2H5OH has been observed in the next series of supports: Ce1-xMgxOy < Ce1-xGdxOy < Ce1-xLaxOy and with a decrease of x to an optimal value that correlates with the improvement of Ni active component reducibility. At 600 °C on 10Ni/Ce0.8La0.2O1.9 catalyst the H2 yield of 50% was achieved at C2H5OH conversion of 100%. Stable and high performance of developed catalysts in ATR of C2H5OH indicates the promise of their use in the production of hydrogen

    Structural Changes of Mo/ZSM-5 Catalysts During the Methane Dehydroaromatization

    Get PDF
    The structure changes of Mo/ZSM-5 catalysts with different Mo content (2 and 10 wt. % Mo) and Si/Al atomic ratio (17, 30 and 45) during the methane dehydroaromatization have been investigated by X-ray powder diffractometry, N2 adsorption and transmission electron microscopy. The treatment of Mo/ZSM-5 catalysts in reducing atmosphere (CH4 or H2) at about 700 oC promotes development of mesoporous system. The pores are open to the exterior of the zeolite grain and have an entrance diameter of ~ 4-10 nm. It is proposed that mesopore formation in Mo/ZSM-5 catalyst is connected with the dealumination of zeolite. The mesopore formation in the parent H-ZSM-5 zeolite by NaOH treatment does not improve the activity of /ZSM-5 catalyst

    New Gas-Phase Catalytic Oxidative Processes for Desulfurization of Diesel Fuel

    Get PDF
    An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene(DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene<DBT<DMDBT. The main sulfur containing product of oxidation of these compounds was SO2. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel

    Deactivation and Regeneration of Mo/ZSM-5 Catalysts for Methane Dehydroaromatization

    Get PDF
    The methane dehydroaromatization (DHA) was studied over a series of impregnated Mo/ZSM-5 catalysts with different molybdenum contents (1-10 wt.%). It was shown that total methane conversion was decreased by 30% during 12 h of DHA reaction. The benzene formation rate was increased from 0.5 to 13.9 mol C6H6/(gMo·s) when the molybdenum content in the catalyst was lowered from 10 to 1 wt.%. The deactivated Mo/ZSM-5 catalysts were studied by a group of methods: N2 adsorption, XRD, TGDTA, HRTEM and XPS. The content and condensation degree (C/H ratio) of the carbonaceous deposits was found to increase with an increase of either of the following parameters: molybdenum content (1-10 wt.%), reaction temperature (720-780 °C), space velocity (405-1620 h-1), reaction time (0.5-20 h). The stability of Mo/ZSM-5 catalysts in reaction-regeneration cycles was better when the time on stream was shorter. The regeneration conditions of deactivated Mo/ZSM-5 catalysts providing their stable operation under multiple reaction-regeneration cycles have been selected

    Application of POSS nanotechnology for preparation of efficient Ni catalysts for hydrogen production

    Get PDF
    POSS (polyhedral oligomeric silsesquioxanes) nanotechnology was applied for preparation of efficient Ni catalysts for hydrogen production through autothermal reforming of methane (ATR of CH4). The novel metal-POSS precursor [Nickel (II) ‒ HeptaisobutylPOSS (C4H9)7Si7O9(OH)O2Ni] of Ni nanoparticles was introduced into Ce0.5Zr0.5O2 support with following calcination and reduction stages of activation. The peculiarity of the genesis of Ni/SiO2/Ce0.5Zr0.5O2 nanomaterials and their characteristics versus deposition mode were studied by X-ray fluorescence spectroscopy, thermal analysis, N2 adsorption, X-ray diffraction, high-resolution transmission electron microscopy and H2 temperature-programmed reduction. The two kinds of supported Ni-containing particles were observed: highly dispersed Ni forms (1‒2 nm) and large Ni-containing particles (up to 50‒100 nm in size). It was demonstrated that the textural, structural, red-ox and, consequently, catalytic properties of ex-Ni-POSS catalysts depend on the deposition mode. The increase of a portion of difficultly reduced Ni2+ species is found upon application of intermediate calcination during Ni-POSS deposition that has detrimental effect on the activity of catalyst in ATR of CH4. The Ni/SiO2/Ce0.5Zr0.5O2 catalyst prepared by one-step Ni-POSS deposition exhibits the highest H2 yield ‒ 80% at T = 800 °C

    Effect of preparation mode on the properties of Mn-Na-W/ Sio<sub>2</sub> catalysts for oxidative coupling of methane:conventional methods vs. POSS nanotechnology

    No full text
    Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/ SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/ SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/ SiO2 catalysts prepared by conventional methods and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+ Oh cations in the isolated state, while Mn3+ Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800−850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio C2H4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method.</p

    Effect of preparation mode on the properties of Mn-Na-W/ Sio<sub>2</sub> catalysts for oxidative coupling of methane:conventional methods vs. POSS nanotechnology

    No full text
    Using XPS, BET, XRD, TG-DTA, HRTEM-EDX, TPR and UV-Vis Diffuse Reflectance spectroscopic methods the electronic, redox and structural properties of Mn-Na-W/ SiO2 catalysts prepared by the incipient wetness impregnation method and mixture slurry method were studied in detail. Since POSS nanotechnology (POSS = polyhedral oligomeric silsesquioxanes) has attracted attention as tooling for synthesis of catalysts with novel properties and functionalities, we expanded this method for the preparation of Mn-Na-W/ SiO2 catalyst. The physicochemical and catalytic properties of Mn-Na-W/ SiO2 catalysts prepared by conventional methods and POSS nanotechnology were examined comparatively. In all studied Mn-Na-W/ SiO2 catalysts both individual oxides (MnOx, WO3) and bimetal oxide phases (Na2WO4, MnWO4) are found in addition to oxide particles of high dispersion. The UV-Vis Diffuse Reflectance indicates that Na+ cations facilitates stabilization of octahedrally coordinated Mn3+ Oh cations in the isolated state, while Mn3+ Oh promote the disordering of W6+ cations in the supported system. The Mn-Na-W/ SiO2 prepared using metal-POSS precursors marks out presence of unglobular SiO2 particles, higher dispersion of MnOx and MnWO4 particles and more easily reducible metal-oxide species. The catalysts prepared by incipient impregnation method and mixture slurry method have practically similar catalytic performance while the catalyst prepared by POSS nanotechnology method shows lower activity and selectivity. At 800−850 °C the increase of C2 hydrocarbons yield from 4 to 15% and the rise of molar ratio C2H4/C2H6 from 0.2 to 1 are observed when impregnation or mixture slurry method are used for catalyst preparation instead of POSS nanotechnology method.</p
    corecore