3,308 research outputs found
Two-stage Kondo effect in a four-electron artificial atom
An artificial atom with four electrons is driven through a singlet-triplet
transition by varying the confining potential. In the triplet, a Kondo peak
with a narrow dip at drain-source voltage V_ds=0 is observed. The low energy
scale V_ds* characterizing the dip is consistent with predictions for the
two-stage Kondo effect. The phenomenon is studied as a function of temperature
T and magnetic field B, parallel to the two-dimensional electron gas. The low
energy scales T* and B* are extracted from the behavior of the zero-bias
conductance and are compared to the low energy scale V_ds* obtained from the
differential conductance. Good agreement is found between kT* and |g|muB*, but
eV_ds* is larger, perhaps because of nonequilibrium effects.Comment: 7 pages, 7 figures. Added labels on Fig. 3f and one referenc
Modelling chemical reactions using semiconductor quantum dots
We propose using semiconductor quantum dots for a simulation of chemical
reactions as electrons are redistributed among such artificial atoms. We show
that it is possible to achieve various reaction regimes and obtain different
reaction products by varying the speed of voltage changes applied to the gates
forming quantum dots. Considering the simplest possible reaction, , we show how the necessary initial state can be obtained and what
voltage pulses should be applied to achieve a desirable final product. Our
calculations have been performed using the Pechukas gas approach, which can be
extended for more complicated reactions
Transport properties of annealed CdSe nanocrystal solids
Transport properties of artificial solids composed of colloidal CdSe
nanocrystals (NCs) are studied from 6 K to 250 K, before and after annealing.
Annealing results in greatly enhanced dark and photocurrent in NC solids, while
transmission electron microscopy (TEM) micrographs show that the inter-dot
separation decreases. The increased current can be attributed to the
enhancement of inter-dot tunneling caused by the decreased separation between
NCs and by chemical changes in their organic cap. In addition, the absorption
spectra of annealed solids are slightly red-shifted and broadened. These
red-shifts may result from the change of the dielectric environment around the
NCs. Our measurements also indicate that Coulomb interactions between charges
on neighboring NCs play an important role in the tunneling current.Comment: 24 pages,4 figures, 1 tabl
Neutron activation analysis traces copper artifacts to geographical point of origin
Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact
Imaging the charge transport in arrays of CdSe nanocrystals
A novel method to image charge is used to measure the diffusion coefficient
of electrons in films of CdSe nanocrystals at room temperature. This method
makes possible the study of charge transport in films exhibiting high
resistances or very small diffusion coefficients.Comment: 4 pages, 4 jpg figure
Metastable states and information propagation in a 1D array of locally-coupled bistable cells
We study the effect of metastable states on the relaxation process (and hence
information propagation) in locally coupled and boundary-driven structures. We
first give a general argument to show that metastable states are inevitable
even in the simplest of structures, a wire. At finite temperatures, the
relaxation mechanism is a thermally assisted random walk. The time required to
reach the ground state and its life time are determined by the coupling
parameters. These time scales are studied in a model based on an array of
quantum dots.Comment: Accepted for publication in Journal of Applied Physic
Spin-Dependent Tunneling of Single Electrons into an Empty Quantum Dot
Using real-time charge sensing and gate pulsing techniques we measure the
ratio of the rates for tunneling into the excited and ground spin states of a
single-electron AlGaAs/GaAs quantum dot in a parallel magnetic field. We find
that the ratio decreases with increasing magnetic field until tunneling into
the excited spin state is completely suppressed. However, we find that by
adjusting the voltages on the surface gates to change the orbital configuration
of the dot we can restore tunneling into the excited spin state and that the
ratio reaches a maximum when the dot is symmetric.Comment: 4 pages, 3 figure
- …