10 research outputs found

    Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats

    Get PDF
    Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress

    RELATIVE POWER DISTRIBUTIONS IN OMNIGUIDING PHOTONIC BAND-GAP FIBERS

    No full text
    Using Bloch formulations, an analysis is presented of the confinement of power in omniguiding photonic band-gap fibers of different dimensional values. Results are compared for four-layer and eight-layer fibers. Power peaks are observed that correspond to different propagation modes. Power patterns are found to be fairly smoothly matched at the different layer interfaces, which confirm the validity of the analytical approach

    The Quantum Kerr Nonlinear Coupler: The Analytical Versus Phase-Space Method

    No full text
    The generation of squeezed states of light in a two-mode Kerr nonlinear directional coupler (NLDC) was investigated using two different methods in quantum mechanics. First, the analytical method, a Heisenberg-picture-based method where the operators are evolving in time but the state vectors are time-independent. In this method, an analytical solution to the coupled Heisenberg equations of motion for the propagating modes was proposed based on Baker–Hausdorff (BH) formula. Second, the phase space method, a Schrdinger-picture based method in which the operators are constant and the density matrix evolves in time. In this method, the quantum mechanical master equation of the density matrix was converted to a corresponding classical Fokker-Planck (FP) equation in positive-P representation. Then, the FP equation was converted to a set of stochastic differential equations using Ito rules. The strength and weaknesses of each method are discussed. A good agreement between both methods was achieved, especially at early evolution stages and lower values of linear coupling coefficient. On one side, the analytical method seems insensitive to higher values of nonlinear coupling coefficients. Nevertheless, it demonstrated better numerical stability. On the other side, the solution of the stochastic equations resulting from the phase space method is numerically expensive as it requires averaging over thousands of trajectories. Besides, numerically unstable trajectories appear with positive-P representation at higher values of nonlinearity.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Enhancing Photoluminescence Intensity and Spectral Bandwidth of Hybrid Nanofiber/Thin-Film Multilayer Tm3+-Doped SiO2–HfO2

    No full text
    Multilayering of optical thin films is widely used for a range of purposes in photonic technology, but the development of nanofiber structures that can outperform thin films and nanoparticles in optical applications cannot simply be disregarded. Hybrid structures composed of Tm3+-doped SiO2–HfO2 in the form of nanofibers (NFs) and thin films (TFs) are deposited on a single substrate using the electrospinning and dip-coating methods, respectively. Ultrafine nanofiber strands with a diameter of 10–60 nm were fabricated in both single and multilayer samples. Enhanced photoluminescence emission intensity of about 10 times was attained at wavelengths of around 457, 512 and 634 nm under an excitation of 350 nm for NF-TF-NF* hybrid structures when compared with single-layered NF and TF structures. The arrangement of nanofibers and thin films in a multilayer structure influenced the luminescence intensity and spectral bandwidth. High transparency in the range of 75–95% transparency across the wavelength of 200–2000 nm was achieved, making it ideal for photonic application. Theoretical findings obtained through IMD software were compared with experimental results, and they were found to be in good agreement

    Chemical Profile of Cyperus laevigatus and Its Protective Effects against Thioacetamide-Induced Hepatorenal Toxicity in Rats

    No full text
    Cyperus species represent a group of cosmopolitan plants used in folk medicine to treat several diseases. In the current study, the phytochemical profile of Cyperus laevigatus ethanolic extract (CLEE) was assessed using UPLC-QTOF–MS/MS. The protective effect of CLEE at 50 and 100 mg /kg body weight (b.w.) was evaluated on hepatorenal injuries induced by thioacetamide (100 mg/kg) via investigation of the extract’s effects on oxidative stress, inflammatory markers and histopathological changes in the liver and kidney. UPLC-QTOF–MS/MS analysis of CLEE resulted in the identification of 94 compounds, including organic and phenolic acids, flavones, aurones, and fatty acids. CLEE improved the antioxidant status in the liver and kidney, as manifested by enhancement of reduced glutathione (GSH) and coenzyme Q10 (CoQ10), in addition to the reduction in malondialdehyde (MDA), nitric oxide (NO), and 8-hydroxy-2′-deoxyguanosine (8OHdG). Moreover, CLEE positively affected oxidative stress parameters in plasma and thwarted the depletion of hepatorenal ATP content by thioacetamide (TAA). Furthermore, treatment of rats with CLEE alleviated the significant increase in plasma liver enzymes, kidney function parameters, and inflammatory markers. The protective effect of CLEE was confirmed by a histopathological study of the liver and kidney. Our results proposed that CLEE may reduce TAA-hepatorenal toxicity via its antioxidant and anti-inflammatory properties suppressing oxidative stress
    corecore