4,523 research outputs found
In-Space technology experiments program. A high efficiency thermal interface (using condensation heat transfer) between a 2-phase fluid loop and heatpipe radiator: Experiment definition phase
Space Station elements and advanced military spacecraft will require rejection of tens of kilowatts of waste heat. Large space radiators and two-phase heat transport loops will be required. To minimize radiator size and weight, it is critical to minimize the temperature drop between the heat source and sink. Under an Air Force contract, a unique, high-performance heat exchanger is developed for coupling the radiator to the transport loop. Since fluid flow through the heat exchanger is driven by capillary forces which are easily dominated by gravity forces in ground testing, it is necessary to perform microgravity thermal testing to verify the design. This contract consists of an experiment definition phase leading to a preliminary design and cost estimate for a shuttle-based flight experiment of this heat exchanger design. This program will utilize modified hardware from a ground test program for the heat exchanger
The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1
The mid-Miocene climatic optimum (MMCO) is an intriguing climatic period due
to its above-modern temperatures in mid-to-high latitudes in the presence of
close-to-modern CO<sub>2</sub> concentrations. We use the recently released Community
Earth System Model (CESM1.0) with a slab ocean to simulate this warm period,
incorporating recent Miocene CO<sub>2</sub> reconstructions of 400 ppm (parts per million). We simulate a
global mean annual temperature (MAT) of 18 °C, ~4 °C
above the preindustrial value, but 4 °C colder than the global
Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that
the inclusion of a reduced Antarctic ice sheet, an equatorial Pacific temperature gradient
characteristic of a permanent El Niño, increased CO<sub>2</sub> to 560 ppm, and variations in
obliquity only marginally improve model–data agreement. All MMCO simulations
have an Equator to pole temperature gradient that is at least
~10 °C larger than that reconstructed from proxies. The MMCO
simulation most comparable to the proxy records requires a CO<sub>2</sub>
concentration of 800 ppm. Our results illustrate that MMCO warmth is not
reproducible using the CESM1.0 forced with CO<sub>2</sub> concentrations
reconstructed for the Miocene or including various proposed Earth system
feedbacks; the remaining discrepancy in the MAT is comparable to that
introduced by a CO<sub>2</sub> doubling. The model's tendency to underestimate proxy
derived global MAT and overestimate the Equator to pole temperature gradient
suggests a major climate problem in the MMCO akin to those in the Eocene. Our
results imply that this latest model, as with previous generations of climate
models, is either not sensitive enough or additional forcings remain missing
that explain half of the anomalous warmth and pronounced polar amplification
of the MMCO
Space-efficient detection of unusual words
Detecting all the strings that occur in a text more frequently or less
frequently than expected according to an IID or a Markov model is a basic
problem in string mining, yet current algorithms are based on data structures
that are either space-inefficient or incur large slowdowns, and current
implementations cannot scale to genomes or metagenomes in practice. In this
paper we engineer an algorithm based on the suffix tree of a string to use just
a small data structure built on the Burrows-Wheeler transform, and a stack of
bits, where is the length of the string and
is the size of the alphabet. The size of the stack is except for very
large values of . We further improve the algorithm by removing its time
dependency on , by reporting only a subset of the maximal repeats and
of the minimal rare words of the string, and by detecting and scoring candidate
under-represented strings that in the string. Our
algorithms are practical and work directly on the BWT, thus they can be
immediately applied to a number of existing datasets that are available in this
form, returning this string mining problem to a manageable scale.Comment: arXiv admin note: text overlap with arXiv:1502.0637
Big Data Analytics on combining RADAR and optical remote sensing imagery
Remote sensing data is big, which makes it inherently not FAIR, due to the great burden put on the users, for the data to be truly Accessible. In turn, this makes it unfeasible to process data to an Interoperable form. The ESA’s Copernicus program raised the bar for quality data in earth observation satellite sensors ..
Unstable states in QED of strong magnetic fields
We question the use of stable asymptotic scattering states in QED of strong
magnetic fields. To correctly describe excited Landau states and photons above
the pair creation threshold the asymptotic fields are chosen as generalized
Licht fields. In this way the off-shell behavior of unstable particles is
automatically taken into account, and the resonant divergences that occur in
scattering cross sections in the presence of a strong external magnetic field
are avoided. While in a limiting case the conventional electron propagator with
Breit-Wigner form is obtained, in this formalism it is also possible to
calculate -matrix elements with external unstable particles.Comment: Revtex, 7 pages. To appear in Phys. Rev. D53(2
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Understanding the link between vegetation characteristics and tree transpiration is a critical need to facilitate satellite-based transpiration estimation. Many studies use the Normalized Difference Vegetation Index (NDVI), a proxy for tree biophysical characteristics, to estimate evapotranspiration. In this study, we investigated the link between sap velocity and 30 m resolution Landsat-derived NDVI for 20 days during 2 contrasting precipitation years in a temperate deciduous forest catchment. Sap velocity was measured in the Attert catchment in Luxembourg in 25 plots of 20×20 m covering three geologies with sensors installed in two to four trees per plot. The results show that, spatially, sap velocity and NDVI were significantly positively correlated in April, i.e. NDVI successfully captured the pattern of sap velocity during the phase of green-up. After green-up, a significant negative correlation was found during half of the studied days. During a dry period, sap velocity was uncorrelated with NDVI but influenced by geology and aspect. In summary, in our study area, the correlation between sap velocity and NDVI was not constant, but varied with phenology and water availability. The same behaviour was found for the Enhanced Vegetation Index (EVI). This suggests that methods using NDVI or EVI to predict small-scale variability in (evapo)transpiration should be carefully applied, and that NDVI and EVI cannot be used to scale sap velocity to stand-level transpiration in temperate forest ecosystems
A framework for space-efficient string kernels
String kernels are typically used to compare genome-scale sequences whose
length makes alignment impractical, yet their computation is based on data
structures that are either space-inefficient, or incur large slowdowns. We show
that a number of exact string kernels, like the -mer kernel, the substrings
kernels, a number of length-weighted kernels, the minimal absent words kernel,
and kernels with Markovian corrections, can all be computed in time and
in bits of space in addition to the input, using just a
data structure on the Burrows-Wheeler transform of the
input strings, which takes time per element in its output. The same
bounds hold for a number of measures of compositional complexity based on
multiple value of , like the -mer profile and the -th order empirical
entropy, and for calibrating the value of using the data
- …