9,122 research outputs found

    Constructing Gravitational Dimensions

    Full text link
    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg which does not break down until the scale Lambda_2=(mg Mpl)^(1/2), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Lambda_3 = (mg^2 Mpl)^(1/3). Next, we look at how the discretization prescribed by the truncation of the KK tower of an honest extra diemsinon rasies the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit. A number of canditate symmetries associated with locality in the discretized dimension are also discussed.Comment: 21 pages, 6 diagrams, 1 figur

    Discrete Gravitational Dimensions

    Get PDF
    We study the physics of a single discrete gravitational extra dimension using the effective field theory for massive gravitons. We first consider a minimal discretization with 4D gravitons on the sites and nearest neighbor hopping terms. At the linear level, 5D continuum physics is recovered correctly, but at the non-linear level the theory becomes highly non-local in the discrete dimension. There is a peculiar UV/IR connection, where the scale of strong interactions at high energies is related to the radius of the dimension. These new effects formally vanish in the limit of zero lattice spacing, but do not do so quickly enough to reproduce the continuum physics consistently in an effective field theory up to the 5D Planck scale. Nevertheless, this model does make sense as an effective theory up to energies parametrically higher than the compactification scale. In order to have a discrete theory that appears local in the continuum limit, the lattice action must have interactions between distant sites. We speculate on the relevance of these observations to the construction of finite discrete theories of gravity in four dimensions.Comment: 5 pages, 4 diagrams. Important typos in some equations corrected; conclusion s unchange

    Supersymmetry-Breaking Loops from Analytic Continuation into Superspace

    Get PDF
    We extend to all orders in perturbation theory a method to calculate supersymmetry-breaking effects by analytic continuation of the renormalization group into superspace. A central observation is that the renormalized gauge coupling can be extended to a real vector superfield, thereby including soft breaking effects in the gauge sector. We explain the relation between this vector superfield coupling and the "holomorphic" gauge coupling, which is a chiral superfield running only at 1 loop. We consider these issues for a number of regulators, including dimensional reduction. With this method, the renormalization group equations for soft supersymmetry breaking terms are directly related to supersymmetric beta functions and anomalous dimensions to all orders in perturbation theory. However, the real power of the formalism lies in computing finite soft breaking effects corresponding to high-loop component calculations. We prove that the gaugino mass in gauge-mediated supersymmetry breaking is ``screened'' from strong interactions in the messenger sector. We present the complete next-to-leading calculation of gaugino masses (2 loops) and sfermion masses (3 loops) in minimal gauge mediation, and several other calculations of phenomenological relevance.Comment: 50 pages, 1 ps and 1 eps figure, LaTe

    Causality, Analyticity and an IR Obstruction to UV Completion

    Get PDF
    We argue that certain apparently consistent low-energy effective field theories described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity constraints. The obstruction involves the signs of a set of leading irrelevant operators, which must be strictly positive to ensure UV analyticity. An IR manifestation of this restriction is that the "wrong" signs lead to superluminal fluctuations around non-trivial backgrounds, making it impossible to define local, causal evolution, and implying a surprising IR breakdown of the effective theory. Such effective theories can not arise in quantum field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyticity properties. This conclusion applies to the DGP brane-world model modifying gravity in the IR, giving a simple explanation for the difficulty of embedding this model into controlled stringy backgrounds, and to models of electroweak symmetry breaking that predict negative anomalous quartic couplings for the W and Z. Conversely, any experimental support for the DGP model, or measured negative signs for anomalous quartic gauge boson couplings at future accelerators, would constitute direct evidence for the existence of superluminality and macroscopic non-locality unlike anything previously seen in physics, and almost incidentally falsify both local quantum field theory and perturbative string theory.Comment: 34 pages, 10 figures; v2: analyticity arguments improved, discussion on non-commutative theories and minor clarifications adde

    Quantum Key Distribution over Probabilistic Quantum Repeaters

    Full text link
    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal excitation probability at which the QKD rate peaks. Such an optimum probability, in most regimes of interest, is insensitive to the total distance.Comment: 12 pages, 6 figures; Fig. 5(a) is replace

    Some Aspects of New CDM Models and CDM Detection Methods

    Full text link
    We briefly review some recent Cold Dark Matter (CDM) models. Our main focus are charge symmetric models of WIMPs which are not the standard SUSY LSP's (Lightest Supersymmetric Partners). We indicate which experiments are most sensitive to certain aspects of the models. In particular we discuss the manifestations of the new models in neutrino telescopes and other set-ups. We also discuss some direct detection experiments and comment on measuring the direction of recoil ions--which is correlated with the direction of the incoming WIMP. This could yield daily variations providing along with the annual modulation signatures for CDM.Comment: 14 page
    • …
    corecore