5,158 research outputs found

    Second bound state of PsH

    Get PDF
    The existence of a second bound state of PsH that is electronically stable and also stable against positron annihilation by the normal 2gamma and 3gamma processes is demonstrated by explicit calculation. The state can be found in the 2,4So symmetries with the two electrons in a spin triplet state. The binding energy against dissociation into the H(2p) + Ps(2p) channel was 6.06x10-4 Hartree. The dominant decay mode of the states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation. The NaPs system of the same symmetry is also electronically stable with a binding energy of 1.553x10-3 Hartree with respect to the Na(3p) + Ps(2p) channel.Comment: 4 pages, 2 figures, RevTex styl

    Integrability of the symmetry reduced bosonic dynamics and soliton generating transformations in the low energy heterotic string effective theory

    Full text link
    Integrable structure of the symmetry reduced dynamics of massless bosonic sector of the heterotic string effective action is presented. For string background equations that govern in the space-time of DD dimensions (D4D\ge 4) the dynamics of interacting gravitational, dilaton, antisymmetric tensor and any number n0n\ge 0 of Abelian vector gauge fields, all depending only on two coordinates, we construct an \emph{equivalent} (2d+n)×(2d+n)(2 d+n)\times(2 d+n) matrix spectral problem (d=D2d=D-2). This spectral problem provides the base for the development of various solution constructing procedures (dressing transformations, integral equation methods). For the case of the absence of Abelian gauge fields, we present the soliton generating transformations of any background with interacting gravitational, dilaton and the second rank antisymmetric tensor fields. This new soliton generating procedure is available for constructing of various types of field configurations including stationary axisymmetric fields, interacting plane, cylindrical or some other types of waves and cosmological solutions.Comment: 4 pages; added new section on Belinski-Zakharov solitons and new expressions for calculation of the conformal factor; corrected typo

    D-branes in the WZW model

    Get PDF
    It is stated in the literature that D-branes in the WZW-model associated with the gluing condition J = - \bar{J} along the boundary correspond to branes filling out the whole group volume. We show instead that the end-points of open strings are rather bound to stay on `integer' conjugacy classes. In the case of SU(2) level k WZW model we obtain k-1 two dimensional Euclidean D-branes and two D particles sitting at the points e and -e.Comment: 2 pages, LaTe

    The Problem of Computer Piracy

    Get PDF
    The problem of illegal downloading is widely spread in the modern world. There are various reasons lying behind the desire to get some paid software or programs free of charge. The most popular are the following: - it is fast and convenient due to special computer or Internet programs so there is no need to wait until the paid product is delivered or go somewhere to buy it; - it is free, so people save considerable amount of money especially in the countries with low incomes; - it is not strictly punished to download and use pirate programs; - many other people do it

    Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group

    Get PDF
    We analyze the hamiltonian quantization of Chern-Simons theory associated to the universal covering of the Lorentz group SO(3,1). The algebra of observables is generated by finite dimensional spin networks drawn on a punctured topological surface. Our main result is a construction of a unitary representation of this algebra. For this purpose, we use the formalism of combinatorial quantization of Chern-Simons theory, i.e we quantize the algebra of polynomial functions on the space of flat SL(2,C)-connections on a topological surface with punctures. This algebra admits a unitary representation acting on an Hilbert space which consists in wave packets of spin-networks associated to principal unitary representations of the quantum Lorentz group. This representation is constructed using only Clebsch-Gordan decomposition of a tensor product of a finite dimensional representation with a principal unitary representation. The proof of unitarity of this representation is non trivial and is a consequence of properties of intertwiners which are studied in depth. We analyze the relationship between the insertion of a puncture colored with a principal representation and the presence of a world-line of a massive spinning particle in de Sitter space.Comment: 78 pages. Packages include

    The embedding structure and the shift operator of the U(1) lattice current algebra

    Get PDF
    The structure of block-spin embeddings of the U(1) lattice current algebra is described. For an odd number of lattice sites, the inner realizations of the shift automorphism areclassified. We present a particular inner shift operator which admits a factorization involving quantum dilogarithms analogous to the results of Faddeev and Volkov.Comment: 14 pages, Plain TeX; typos and a terminological mishap corrected; version to appear in Lett.Math.Phy

    2D Conformal Field Theories and Holography

    Get PDF
    It is known that the chiral part of any 2d conformal field theory defines a 3d topological quantum field theory: quantum states of this TQFT are the CFT conformal blocks. The main aim of this paper is to show that a similar CFT/TQFT relation exists also for the full CFT. The 3d topological theory that arises is a certain ``square'' of the chiral TQFT. Such topological theories were studied by Turaev and Viro; they are related to 3d gravity. We establish an operator/state correspondence in which operators in the chiral TQFT correspond to states in the Turaev-Viro theory. We use this correspondence to interpret CFT correlation functions as particular quantum states of the Turaev-Viro theory. We compute the components of these states in the basis in the Turaev-Viro Hilbert space given by colored 3-valent graphs. The formula we obtain is a generalization of the Verlinde formula. The later is obtained from our expression for a zero colored graph. Our results give an interesting ``holographic'' perspective on conformal field theories in 2 dimensions.Comment: 29+1 pages, many figure
    corecore