88 research outputs found

    Heavy Quark Initiated Contributions to Deep Inelastic Structure Functions

    Get PDF
    We present O(alpha_s^1) corrections to deep inelastic scattering amplitudes on massive quarks obtained within the scheme of Aivazis, Collins, Olness and Tung (ACOT). After identifying the correct subtraction term the convergence of these contributions towards the analogous coefficient functions for massless quarks, obtained within the modified minimal subtraction scheme (MSbar), is demonstrated. Furthermore, the quantitative relevance of the contributions to neutral current (NC) and charged current (CC) structure functions is investigated for several choices of the factorization scale.Comment: 29 pages, 6 figures; uses epsfig.sty, amssymb.sty, axodraw.sty; minor changes for publication in Phys. Rev.

    The t W- Mode of Single Top Production

    Get PDF
    The t W- mode of single top production is proposed as an important means to study the weak interactions of the top quark. While the rate of this mode is most likely too small to be observed at Run II of the Fermilab Tevatron, it is expected to be considerably larger at the CERN LHC. In this article the inclusive t W- rate is computed, including O(1 / log (m_t^2 / m_b^2)) corrections, and when combined with detailed Monte Carlo simulations including the top and W decay products, indicate that the t W- single top process may be extracted from the considerable t tbar and W+ W- j backgrounds at low luminosity runs of the LHC.Comment: 16 pages, 4 figure

    Coefficient Functions and Open Charm Production in Deep Inelastic Scattering

    Get PDF
    It is shown that the problem of double counting in open charm production in DIS can be solved by using the expression for DIS coefficient functions in terms of 2PI diagramsComment: 11 pages, REVTeX, no figure

    Treatment of Heavy Quarks in Deeply Inelastic Scattering

    Full text link
    We investigate a simplified version of the ACOT prescription for calculating deeply inelastic scattering from Q^2 values near the squared mass M_H^2 of a heavy quark to Q^2 much larger than M_H^2.Comment: 14 pages, 5 figure

    Heavy Quark Parton Distributions: Mass-Dependent or Mass-Independent Evolution?

    Get PDF
    In a consistently formulated pQCD framework incorporating non-zero mass heavy quark partons, there is still the freedom to define parton distributions obeying either mass-independent or mass-dependent evolution equations, contrary to statements made in a recent paper by MRRS. With properly matched hard cross-sections, different choices merely correspond to different factorization schemes, and they yield the same physical cross-sections. We demonstrate this principle in a concrete order \alpha_s calculation of the DIS charm structure function. We also examine the proper matching between parton definitions and subtractions in the hard cross-section near threshold where the calculation is particularly sensitive to mass effects of the heavy quark. The results obtained from the general-mass formalism are quite stable against different choices of scale and exhibit a smooth transition in the threshold region (using either mass-independent or mass-dependent evolution), in contrast to results of another recently proposed scheme.Comment: 6 pages, LaTeX, 4 PostScript figures, uses epsf.sty and aipproc.sty; Contribution to DIS97 Workshop, 14-18 April, Chicago, IL, US

    Compatibility of neutrino DIS data and global analyses of parton distribution functions

    Full text link
    Neutrino\antineutrino deep inelastic scattering (DIS) data provide useful constrains for the flavor decomposition in global fits of parton distribution functions (PDF). The smallness of the cross-sections requires the use of nuclear targets in the experimental setup. Understanding the nuclear corrections is, for this reason, of utmost importance for a precise determination of the PDFs. Here, we explore the nuclear effects in the neutrino\antineutrino-nucleon DIS by comparing the NuTeV, CDHSW, and CHORUS cross-sections to the predictions derived from the latest parton distribution functions and their nuclear modifications. We obtain a good description of these data and find no apparent disagreement between the nuclear effects in neutrino DIS and those in charged lepton DIS. These results also indicate that further improvements in the knowledge of the nuclear PDFs could be obtained by a more extensive use of these sets of neutrino data.Comment: 16 pages, 8 figure

    Single-top production at future ep colliders

    Get PDF
    The production of top quarks in single mode at future ep colliders is studied, the attention being mainly focused to the case of the proposed LEPXLHC collider. We are motivated to reanalyse such a process following the discovery of the top quark at Fermilab. Thanks to the measurement of its mass one is now able to establish more accurately the relevance of single top production for itself and for many other processes to which it may act as a background. In addition, the recent improvement of our knowledge of the quark and gluon dynamics inside the proton now allows one to pin down the dependence of single top production on the partonic structure functions. Both the leptonic and hadronic decay channels of the top quark are studied and compared to the yield of the corresponding irreducible background in presence of b-taggingComment: 28 pages, latex, epsfig, 10 postscript figures, complete paper available at ftp://axpa.hep.phy.cam.ac.uk/moretti/cavendish_9704 and at http://www.hep.phy.cam.ac.uk/theory/papers

    Leptoproduction of Heavy Quarks II -- A Unified QCD Formulation of Charged and Neutral Current Processes from Fixed-target to Collider Energies

    Full text link
    A unified QCD formulation of leptoproduction of massive quarks in charged current and neutral current processes is described. This involves adopting consistent factorization and renormalization schemes which encompass both vector-boson-gluon-fusion (flavor creation) and vector-boson-massive-quark-scattering (flavor excitation) production mechanisms. It provides a framework which is valid from the threshold for producing the massive quark (where gluon-fusion is dominant) to the very high energy regime when the typical energy scale \mu is much larger than the quark mass m_Q (where the quark-scattering should be prevalent). This approach effectively resums all large logarithms of the type (alpha_s(mu) log(mu^2/m_Q^2)^n which limit the validity of existing fixed-order calculations to the region mu ~ O(m_Q). We show that the (massive) quark-scattering contribution (after subtraction of overlaps) is important in most parts of the (x, Q) plane except near the threshold region. We demonstrate that the factorization scale dependence of the structure functions calculated in this approach is substantially less than those obtained in the fixed-order calculations, as one would expect from a more consistent formulation.Comment: LaTeX format, 29 pages, 11 figures. Revised to make auto-TeX-abl
    corecore