252 research outputs found

    BAD: a good therapeutic target?

    Get PDF
    The major goal in cancer treatment is the eradication of tumor cells. Under stress conditions, normal cells undergo apoptosis; this property is fortunately conserved in some tumor cells, leading to their death as a result of chemotherapeutic and/or radiation-induced stress. Many malignant cells, however, have developed ways to subvert apoptosis, a characteristic that constitutes a major clinical problem. Gilmore et al. recently described the ability of ZD1839, a small-molecule inhibitor of the epidermal growth factor receptor (EGFR), to induce apoptosis of mammary cells that are dependent upon growth factors for survival. Furthermore, they showed that the major effector of the EGFR-targeted therapy is BAD, a widely expressed BCL-2 family member. These results are promising in light of the role of the EGFR in breast cancer development

    HER2/neu overexpression in the development of muscle-invasive transitional cell carcinoma of the bladder

    Get PDF
    The mortality from transitional cell carcinoma (TCC) of the urinary bladder increases significantly with the progression of superficial or locally invasive disease (pTa/pT1) to detrusor muscle-invasive disease (pT2+). The most common prognostic markers in clinical use are tumour stage and grade, which are subject to considerable intra- and interobserver variation. Polysomy 17 and HER2/neu gene amplification and protein overexpression have been associated with more advanced disease. Standardised techniques of fluorescence in situ hybridisation and immunohistochemistry, which are currently applied to other cancers with a view to offering anti-HER2/neu therapies, were applied to tumour pairs comprising pre- and postinvasive disease from 25 patients undergoing treatment for bladder cancer. In the preinvasive tumours, increased HER2/neu copy number was observed in 76% of cases and increased chromosome 17 copy number in 88% of cases, and in the postinvasive group these values were 92 and 96%, respectively (not significantly different P=0.09 and 0.07, respectively). HER2 gene amplification rates were 8% in both groups. Protein overexpression rates were 76 and 52%, respectively, in the pre- and postinvasive groups (P=0.06). These results suggest that HER2/neu abnormalities occur prior to and persist with the onset of muscle-invasive disease. Gene amplification is uncommon and other molecular mechanisms must account for the high rates of protein overexpression. Anti-HER2/neu therapy might be of use in the treatment of TCC

    PTK (protein tyrosine kinase)-6 and HER2 and 4, but not HER1 and 3 predict long-term survival in breast carcinomas

    Get PDF
    The HER receptors are of therapeutic and prognostic significance in breast cancer, and their function is modulated by cytoplasmic tyrosine kinases like PTK6 (brk). We performed a retrospective study on archival breast cancer samples from patients with long follow-up and compared the protein expression between individual HERs and between HERs and the PTK6. Univariate and multivariate analyses were used to study the prognostic value of parameters. Metastases-free survival of patients for longer than 240 months was inversely associated (P⩽0.05) with nodal status, tumour size, and oestrogen receptor status, but was also directly associated with high protein expression levels of HER4 and PTK6 in Kaplan–Meier analysis. In multivariate analysis for metastases-free survival of >240 months, the stepwise selected parameters were tumour size (relative risk 3.1), PTK6 expression (0.4), and number of positive lymph nodes (1.2). Furthermore, we demonstrated a timedependence of the prognostic value attributed to the parameters. The HER receptors (HER2,4), but not PTK6, were independent prognostic markers for metastases-free survival at 60 months, whereas at 240 months PTK6 is the strongest prognostic marker. We demonstrate that PTK6 is a prognostic marker of metastases-free survival in breast cancer, and is independent of the classical morphological and molecular markers of lymph node involvement, tumour size, and HER2 status

    Targeting the EGFR in ovarian cancer with the tyrosine kinase inhibitor ZD1839 (“Iressa”).

    Get PDF
    The modulating effects of the orally active epidermal growth factor receptor-specific tyrosine kinase inhibitor ZD 1839 (‘Iressa’) on cell growth and signalling were evaluated in four ovarian cancer cell lines (PE01, PE04, SKOV-3, OVCAR-5) that express the epidermal growth factor receptor, and in A2780, which is epidermal growth factor receptor-negative. Transforming growth factor-α stimulated growth was completely inhibited by concentrations of ZD 1839 ⩾0.3 μM in the epidermal growth factor receptor-expressing cell lines, as were transforming growth factor-α stimulated phosphorylation of the epidermal growth factor receptor and downstream components of the MAP kinase and PI-3 kinase signalling cascades. Growth inhibition in the absence of added transforming growth factor-α was also observed which could be consistent with suppression of action of autocrine epidermal growth factor receptor-activating ligands by ZD 1839. In support of this, transforming growth factor-α, EGF and amphiregulin mRNAs were detected by RT–PCR in the epidermal growth factor receptor-expressing cell lines. ZD 1839 inhibited growth of the PE04 ovarian cancer xenograft at 200 mg kg(−1) day(−1). These data lend further support to the view that targeting the epidermal growth factor receptor in ovarian cancer could have therapeutic benefit. British Journal of Cancer (2002) 86, 456–462. DOI: 10.1038/sj/bjc/6600058 www.bjcancer.com © 2002 The Cancer Research Campaig

    Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA)

    Get PDF
    Gefitinib (IRESSA), an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, has antitumour activity in the advanced non-small-cell lung cancer (NSCLC) setting. However, in chemotherapy-naïve patients with advanced NSCLC, the addition of gefitinib to standard chemotherapy regimens failed to increase survival. These results suggest the need for improved patient selection and combination rationales for targeted therapies. We have identified subpopulations of an adenocarcinoma cell line that are naturally resistant to gefitinib, and have analysed the cDNA expression profiles, genomic status of EGFR gene and the effect of gefitinib on signalling pathways in these cell lines in order to identify key mechanisms for naturally acquired resistance to gefitinib. Gefitinib-resistant subpopulations demonstrated increased Akt phosphorylation (not inhibited by gefitinib), reduced PTEN protein expression and loss of the EGFR gene mutation when compared with parental cell lines. These differences in Akt and PTEN protein expression were not evident from the cDNA array profiles. These data suggests that (1) the EGFR gene mutation may be possibly lost in some cancer cells with other additional mechanisms for activating Akt, (2) reintroduction of PTEN or pharmacological downregulation of the constitutive PI3K–Akt-pathway activity may be an attractive therapeutic strategy in cancers with gefitinib resistance

    Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity

    Get PDF
    Although targeting of the death receptors (DRs) DR4 and DR5 still appears a suitable antitumoral strategy, the limited clinical responses to recombinant soluble TNF-related apoptosis inducing ligand (TRAIL) necessitate novel reagents with improved apoptotic activity/tumor selectivity. Apoptosis induction by a single-chain TRAIL (scTRAIL) molecule could be enhanced >10-fold by generation of epidermal growth factor receptor (EGFR)-specific scFv-scTRAIL fusion proteins. By forcing dimerization of scFv-scTRAIL based on scFv linker modification, we obtained a targeted scTRAIL composed predominantly of dimers (Db-scTRAIL), exceeding the activity of nontargeted scTRAIL ∼100-fold on Huh-7 hepatocellular and Colo205 colon carcinoma cells. Increased activity of Db-scTRAIL was also demonstrated on target-negative cells, suggesting that, in addition to targeting, oligomerization equivalent to an at least dimeric assembly of standard TRAIL per se enhances apoptosis signaling. In the presence of apoptosis sensitizers, such as the proteasomal inhibitor bortezomib, Db-scTRAIL was effective at picomolar concentrations in vitro (EC50 ∼2 × 10−12 M). Importantly, in vivo, Db-scTRAIL was well tolerated and displayed superior antitumoral activity in mouse xenograft (Colo205) tumor models. Our results show that both targeting and controlled dimerization of scTRAIL fusion proteins provides a strategy to enforce apoptosis induction, together with retained tumor selectivity and good in vivo tolerance

    Essential function for ErbB3 in breast cancer proliferation

    Get PDF
    The overexpression of the ErbB family of tyrosine kinase receptors is thought to be important in the development of many breast tumours. To date, most attention has focused on the ErbB2 receptor. Now, in a recent report, it has been shown that ErbB3 is a critical partner for the transforming activity of ErbB2 in breast cancer cells. Importantly, the proliferative signals from this transforming complex appear to act via the PI-3 kinase pathway
    corecore