3,878 research outputs found
On the relation between sSFR and metallicity
In this paper we present an exact general analytic expression
linking the gas metallicity Z to the specific
star formation rate (sSFR), that validates and extends the approximate relation
put forward by Lilly et al. (2013, L13), where is the yield per stellar
generation, is the instantaneous ratio between inflow and star
formation rate expressed as a function of the sSFR, and is the integral of
the past enrichment history, respectively. We then demonstrate that the
instantaneous metallicity of a self-regulating system, such that its sSFR
decreases with decreasing redshift, can be well approximated by the first term
on the right-hand side in the above formula, which provides an upper bound to
the metallicity. The metallicity is well approximated also by the L13 ideal
regulator case, which provides a lower bound to the actual metallicity. We
compare these approximate analytic formulae to numerical results and infer a
discrepancy <0.1 dex in a range of metallicities and almost three orders of
magnitude in the sSFR. We explore the consequences of the L13 model on the
mass-weighted metallicity in the stellar component of the galaxies. We find
that the stellar average metallicity lags 0.1-0.2 dex behind the gas-phase
metallicity relation, in agreement with the data. (abridged)Comment: 14 pages, 6 figures, MNRAS accepte
Tunneling and nonlinear transport in a vertically coupled GaAs/AlGaAs double quantum wire system
We report low-dimensional tunneling in an independently contacted vertically
coupled quantum wire system. This nanostructure is fabricated in a high quality
GaAs/AlGaAs parallel double quantum well heterostructure. Using a novel flip
chip technique to align top and bottom split gates to form low-dimensional
constrictions in each of the independently contacted quantum wells we
explicitly control the subband occupation of the individual wires. In addition
to the expected 2D-2D tunneling results, we have found additional tunneling
features that are related to the 1D quantum wires.Comment: 4 pages, 3 figures, submitted to APL Minor revision
Undoped Electron-Hole Bilayers in a GaAs/AlGaAs Double Quantum Well
We present the fabrication details of completely undoped electron-hole
bilayer devices in a GaAs/AlGaAs double quantum well heterostructure with a 30
nm barrier. These devices have independently tunable densities of the
two-dimensional electron gas and two-dimensional hole gas. We report
four-terminal transport measurements of the independently contacted electron
and hole layers with balanced densities from cm down
to cm at . The mobilities can exceed cm V s for electrons and
cm V s for holes.Comment: 3 pages, 3 figure
Oxygen Gas Abundances at 0.4<z<1.5: Implications for the Chemical Evolution History of Galaxies
We report VLT-ISAAC and Keck-NIRSPEC near-infrared spectroscopy for a sample
of 30 0.47<z<0.92 CFRS galaxies and five [OII]-selected, M_B,AB<-21.5, z~1.4
galaxies. We have measured Halpha and [NII] line fluxes for the CFRS galaxies
which have [OII], Hbeta and [OIII] line fluxes available from optical
spectroscopy. For the z~1.4 objects we measured Hbeta and [OIII] emission line
fluxes from J-band spectra, and Halpha line fluxes plus upper limits for [NII]
fluxes from H-band spectra. We derive the extinction and oxygen abundances for
the sample using a method based on a set of ionisation parameter and oxygen
abundance diagnostics, simultaneously fitting the [OII], Hbeta, [OIII], Halpha
and [NII] line fluxes. Our most salient conclusions are: a) the source of gas
ionisation in the 30 CFRS and in all z~1.4 galaxies is not due to AGN activity;
b) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have
substantially lower metallicities than local galaxies with similar luminosities
and star formation rates; c) comparison with a chemical evolution model
indicates that these low metallicity galaxies are unlikely to be the
progenitors of metal-poor dwarf galaxies at z~0, but more likely the
progenitors of massive spirals; d) the z~1.4 galaxies are characterized by the
high [OIII]/[OII] line ratios, low extinction and low metallicity that are
typical of lower luminosity CADIS galaxies at 0.4<z<0.7, and of more luminous
Lyman Break Galaxies at z~3.1, but not seen in CFRS galaxies at 0.4<z<1.0; e)
the properties of the z~1.4 galaxies suggest that the period of rapid chemical
evolution takes place progressively in lower mass systems as the universe ages,
and thus provides further support for a downsizing picture of galaxy formation,
at least from z~1.4 to today.Comment: Proceedings contribution for "The Fabulous Destiny of Galaxies;
Bridging Past and Present", Marseille, 200
Orientation of the Stripe Formed by the Two-Dimensional Electrons in Higher Landau Levels
Effect of periodic potential on the stripe phase realized in the higher
Landau levels is investigated by the Hartree-Fock approximation. The period of
the potential is chosen to be two to six times of the fundamental period of the
stripe phase. It is found that the stripe aligns perpendicularly to the
external potential in contrast to a naive expectation and hydrodynamic theory.
Charge modulation towards the Wigner crystallization along the stripe is
essential for the present unexpected new result.Comment: 5 pages, RevTex, two figures included in the tex
Evangelists Vs. Elders
https://digitalcommons.acu.edu/crs_books/1586/thumbnail.jp
Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field
We report the observation of an acute sensitivity of the anisotropic
longitudinal resistivity of two-dimensional electron systems in half-filled
high Landau levels to the magnitude and orientation of an in-plane magnetic
field. In the third and higher Landau levels, at filling fractions nu=9/2,
11/2, etc., the in-plane field can lead to a striking interchange of the "hard"
and "easy" transport directions. In the second Landau level the normally
isotropic resistivity and the weak nu=5/2 quantized Hall state are destroyed by
a large in-plane field and the transport becomes highly anisotropic.Comment: 5 pages, 4 figures, minor errors correcte
Coulomb Drag in the Exciton Regime in Electron-Hole Bilayers
We report electrical transport measurements on GaAs/AlGaAs based
electron-hole bilayers. These systems are expected to make a transition from a
pair of weakly coupled two-dimensional systems to a strongly coupled exciton
system as the barrier between the layers is reduced. Once excitons form,
phenomena such as Bose-Einstein condensation of excitons could be observed. In
our devices, electrons and holes are confined in double quantum wells, and
carriers in the devices are induced with top and bottom gates leading to
variable density in each layer. Separate contact to each layer allows Coulomb
drag transport measurements where current is driven in one layer while voltage
is measured in the other. Coulomb drag is sensitive to interlayer coupling and
has been predicted to provide a strong signature of exciton condensation. Drag
measurement on EHBLs with a 30 nm barrier are consistent with drag between two
weakly coupled 2D Fermi systems where the drag decreases as the temperature is
reduced. When the barrier is reduced to 20 nm, we observe a consistent increase
in the drag resistance as the temperature is reduced. These results indicate
the onset of a much stronger coupling between the electrons and holes which
leads to exciton formation and possibly phenomena related to exciton
condensation.Comment: 12 pages, 3 figure
The Subillimeter Properties of Extremely Red Objects in the CUDSS Fields
We discuss the submillimeter properties of Extremely Red Objects (EROs) in
the two Canada-UK Deep Submillimeter Survey (CUDSS) Fields. We measure the mean
submillimeter flux of the ERO population (to K < 20.7) and find 0.4 +/- 0.07
mJy for EROs selected by (I-K) > 4.0 and 0.56 +/- 0.09 mJy for EROs selected by
(R-K) > 5.3 but, these measurements are dominated by discrete, bright
submillimeter sources. We estimate that EROs produce 7-11% of the far-infrared
background at 850um. This is substantially less than a previous measurement by
Wehner, Barger & Kneib (2002) and we discuss possible reasons for this
discrepancy. We show that ERO counterparts to bright submillimeter sources lie
within the starburst region of the near-infrared color-color plot of Pozzetti &
Mannucci (2000). Finally, we claim that pairs or small groups of EROs with
separations of < 10 arcseconds often mark regions of strong submillimeter flux.Comment: 9 pages, 8 figures, accepted for publication in Ap
Near-Infrared Spectroscopy of 0.4<z<1.0 CFRS Galaxies: Oxygen Abundances, SFRs and Dust
Using new J-band VLT-ISAAC and Keck-NIRSPEC spectroscopy, we have measured
Halpha and [NII] line fluxes for 0.47<z<0.92 CFRS galaxies which have [OII],
Hbeta and [OIII]a line fluxes available from optical spectroscopy, to
investigate how the properties of the star forming gas in galaxies evolve with
redshift. We derive the extinction and oxygen abundances for the sample using a
method based on a set of ionisation parameter and oxygen abundance diagnostics,
simultaneously fitting the [OII], Hbeta,[OIII], Halpha, and [NII] line fluxes.
The individual reddening measurements allow us to accurately correct the
Halpha-based star formation rate (SFR) estimates for extinction. Our most
salient conclusions are: a) in all 30 CFRS galaxies the source of gas
ionisation is not due to AGN activity; b) we find a range of 0<AV<3, suggesting
that it is important to determine the extinction for every single galaxy in
order to reliably measure SFRs and oxygen abundances in high redshift galaxies;
c) high values of [NII]/Halpha >0.1 for most (but not all) of the CFRS galaxies
indicate that they lie on the high-metallicity branch of the R23 calibration;
d) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have lower
metallicities than local galaxies with similar luminosities and star formation
rates; e) comparison with a chemical evolution model indicates that these low
metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf
galaxies at z~0.Comment: Accepted for publication in the Astrophysical Journa
- …