300 research outputs found
A Novel Sequence-Based Antigenic Distance Measure for H1N1, with Application to Vaccine Effectiveness and the Selection of Vaccine Strains
H1N1 influenza causes substantial seasonal illness and was the subtype of the
2009 influenza pandemic. Precise measures of antigenic distance between the
vaccine and circulating virus strains help researchers design influenza
vaccines with high vaccine effectiveness. We here introduce a sequence-based
method to predict vaccine effectiveness in humans. Historical epidemiological
data show that this sequence-based method is as predictive of vaccine
effectiveness as hemagglutination inhibition (HI) assay data from ferret animal
model studies. Interestingly, the expected vaccine effectiveness is greater
against H1N1 than H3N2, suggesting a stronger immune response against H1N1 than
H3N2. The evolution rate of hemagglutinin in H1N1 is also shown to be greater
than that in H3N2, presumably due to greater immune selection pressure.Comment: 26 pages, 7 figures, 2 tables, supplemen
Query Optimization by Indexing in the ODRA OODBMS
We present features and samples of use of the index optimizer module which has been implemented and tested in the ODRA prototype system. The ODRA index implementation is based on linear hashing and works in a scope of a standalone database. The solution is adaptable to distributed environments in order to optimally utilize data grid computational resources. The implementation consists of transparent optimization, automatic index updating and management facilities
Noise reduction in muon tomography for detecting high density objects
The muon tomography technique, based on multiple Coulomb scattering of cosmic
ray muons, has been proposed as a tool to detect the presence of high density
objects inside closed volumes. In this paper a new and innovative method is
presented to handle the density fluctuations (noise) of reconstructed images, a
well known problem of this technique. The effectiveness of our method is
evaluated using experimental data obtained with a muon tomography prototype
located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di
Fisica Nucleare (INFN). The results reported in this paper, obtained with real
cosmic ray data, show that with appropriate image filtering and muon momentum
classification, the muon tomography technique can detect high density
materials, such as lead, albeit surrounded by light or medium density material,
in short times. A comparison with algorithms published in literature is also
presented
Incorporating high-resolution demand and techno-economic optimization to evaluate micro-grids into the Open Source Spatial Electrification Tool (OnSSET)
For decades, electrification planning in the developing world has often focused on extending the national grid to increase electricity access. This article draws attention to the potential complementary role of decentralized alternatives – primarily micro-grids – to address universal electricity access targets. To this aim, we propose a methodology consisting of three steps to estimate the LCOE and to size micro-grids for large-scale geo-spatial electrification modelling. In the first step, stochastic load demand profiles are generated for a wide range of settlement archetypes using the open-source RAMP model. In the second step, stochastic optimization is carried by the open-source MicroGridsPy model for combinations of settlement size, load demand profiles and other important techno-economic parameters influencing the LCOE. In the third step, surrogate models are generated to automatically evaluate the LCOE using a multivariate regression of micro-grid optimization results as a function of influencing parameters defining each scenario instance. Our developments coupled to the OnSSET electrification tool reveal an important increase in the cost-competitiveness of micro-grids compared to previous analyses
Annihilation of low energy antiprotons in silicon
The goal of the AEIS experiment at the Antiproton
Decelerator (AD) at CERN, is to measure directly the Earth's gravitational
acceleration on antimatter. To achieve this goal, the AEIS
collaboration will produce a pulsed, cold (100 mK) antihydrogen beam with a
velocity of a few 100 m/s and measure the magnitude of the vertical deflection
of the beam from a straight path. The final position of the falling
antihydrogen will be detected by a position sensitive detector. This detector
will consist of an active silicon part, where the annihilations take place,
followed by an emulsion part. Together, they allow to achieve 1 precision on
the measurement of with about 600 reconstructed and time tagged
annihilations.
We present here, to the best of our knowledge, the first direct measurement
of antiproton annihilation in a segmented silicon sensor, the first step
towards designing a position sensitive silicon detector for the
AEIS experiment. We also present a first comparison with
Monte Carlo simulations (GEANT4) for antiproton energies below 5 MeVComment: 21 pages in total, 29 figures, 3 table
Prospects for measuring the gravitational free-fall of antihydrogen with emulsion detectors
The main goal of the AEgIS experiment at CERN is to test the weak equivalence
principle for antimatter. AEgIS will measure the free-fall of an antihydrogen
beam traversing a moir\'e deflectometer. The goal is to determine the
gravitational acceleration g for antihydrogen with an initial relative accuracy
of 1% by using an emulsion detector combined with a silicon micro-strip
detector to measure the time of flight. Nuclear emulsions can measure the
annihilation vertex of antihydrogen atoms with a precision of about 1 - 2
microns r.m.s. We present here results for emulsion detectors operated in
vacuum using low energy antiprotons from the CERN antiproton decelerator. We
compare with Monte Carlo simulations, and discuss the impact on the AEgIS
project.Comment: 20 pages, 16 figures, 3 table
Charge separation relative to the reaction plane in Pb-Pb collisions at TeV
Measurements of charge dependent azimuthal correlations with the ALICE
detector at the LHC are reported for Pb-Pb collisions at TeV. Two- and three-particle charge-dependent azimuthal correlations in
the pseudo-rapidity range are presented as a function of the
collision centrality, particle separation in pseudo-rapidity, and transverse
momentum. A clear signal compatible with a charge-dependent separation relative
to the reaction plane is observed, which shows little or no collision energy
dependence when compared to measurements at RHIC energies. This provides a new
insight for understanding the nature of the charge dependent azimuthal
correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286
A note on comonotonicity and positivity of the control components of decoupled quadratic FBSDE
In this small note we are concerned with the solution of Forward-Backward
Stochastic Differential Equations (FBSDE) with drivers that grow quadratically
in the control component (quadratic growth FBSDE or qgFBSDE). The main theorem
is a comparison result that allows comparing componentwise the signs of the
control processes of two different qgFBSDE. As a byproduct one obtains
conditions that allow establishing the positivity of the control process.Comment: accepted for publicatio
- …