54,862 research outputs found
Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip
Copyright @ 2011 ElsevierThe sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. [2], [3] and [4]). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from the point of view of dynamic structural plasticity. After a comprehensive summary of the behaviour of in-plane deformation of pipe runs [9] and [10] that deform in 2D in a plane, the more complicated case of 3D out-of-plane deformation is discussed. Both experimental studies and modelling using analytical and FE methods have been carried out and they show that, for a good estimate of the “hazard zone” when unconstrained pipe whip motion could occur, a large displacement analysis is essential. The classical, rigid plastic, small deflection analysis (e.g. see [2] and [8]), is valid for estimating the initial failure mechanisms, however it is insufficient for describing the details and consequences of large deflection behaviour
Signifying quantum benchmarks for qubit teleportation and secure communication using Einstein-Podolsky-Rosen steering inequalities
The demonstration of quantum teleportation of a photonic qubit from Alice to
Bob usually relies on data conditioned on detection at Bob's location. I show
that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that
the quantum benchmark for qubit teleportation has been reached, without
postselection. This is possible for scenarios insensitive to losses at the
generation station, and with efficiencies of for the
teleportation process. The benchmark is obtained, if it is shown that Bob can
{}"steer" Alice's record of the qubit as stored by Charlie. EPR steering
inequalities involving measurement settings can also be used to confirm
quantum teleportation, for efficiencies , if one assumes trusted
detectors for Charlie and Alice. Using proofs of monogamy, I show that
two-setting EPR steering inequalities can signify secure teleportation of the
qubit state.Comment: 10 pages, 1 Figur
Macroscopic Local Realism Incompatible with Quantum Mechanics: Failure of Local Realism where Measurements give Macroscopic Uncertainties
We show that quantum mechanics predicts a contradiction with local hidden
variable theories for photon number measurements which have limited resolving
power, to the point of imposing an uncertainty in the photon number result
which is macroscopic in absolute terms. We show how this can be interpreted as
a failure of a new premise, macroscopic local realism.Comment: 9 pages 3 figure
Micro-Arcsecond Radio Astrometry
Astrometry provides the foundation for astrophysics. Accurate positions are
required for the association of sources detected at different times or
wavelengths, and distances are essential to estimate the size, luminosity,
mass, and ages of most objects. Very Long Baseline Interferometry at radio
wavelengths, with diffraction-limited imaging at sub-milliarcsec resolution,
has long held the promise of micro-arcsecond astrometry. However, only in the
past decade has this been routinely achieved. Currently, parallaxes for sources
across the Milky Way are being measured with ~10 uas accuracy and proper
motions of galaxies are being determined with accuracies of ~1 uas/y. The
astrophysical applications of these measurements cover many fields, including
star formation, evolved stars, stellar and super-massive black holes, Galactic
structure, the history and fate of the Local Group, the Hubble constant, and
tests of general relativity. This review summarizes the methods used and the
astrophysical applications of micro-arcsecond radio astrometry.Comment: To appear in Annual Reviews of Astronomy and Astrophysics (2014
- …