54,862 research outputs found

    Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip

    Get PDF
    Copyright @ 2011 ElsevierThe sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. [2], [3] and [4]). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from the point of view of dynamic structural plasticity. After a comprehensive summary of the behaviour of in-plane deformation of pipe runs [9] and [10] that deform in 2D in a plane, the more complicated case of 3D out-of-plane deformation is discussed. Both experimental studies and modelling using analytical and FE methods have been carried out and they show that, for a good estimate of the “hazard zone” when unconstrained pipe whip motion could occur, a large displacement analysis is essential. The classical, rigid plastic, small deflection analysis (e.g. see [2] and [8]), is valid for estimating the initial failure mechanisms, however it is insufficient for describing the details and consequences of large deflection behaviour

    Signifying quantum benchmarks for qubit teleportation and secure communication using Einstein-Podolsky-Rosen steering inequalities

    Full text link
    The demonstration of quantum teleportation of a photonic qubit from Alice to Bob usually relies on data conditioned on detection at Bob's location. I show that Bohm's Einstein-Podolsky-Rosen (EPR) paradox can be used to verify that the quantum benchmark for qubit teleportation has been reached, without postselection. This is possible for scenarios insensitive to losses at the generation station, and with efficiencies of ηB>1/3\eta_{B}>1/3 for the teleportation process. The benchmark is obtained, if it is shown that Bob can {}"steer" Alice's record of the qubit as stored by Charlie. EPR steering inequalities involving mm measurement settings can also be used to confirm quantum teleportation, for efficiencies ηB>1/m\eta_{B}>1/m, if one assumes trusted detectors for Charlie and Alice. Using proofs of monogamy, I show that two-setting EPR steering inequalities can signify secure teleportation of the qubit state.Comment: 10 pages, 1 Figur

    Macroscopic Local Realism Incompatible with Quantum Mechanics: Failure of Local Realism where Measurements give Macroscopic Uncertainties

    Get PDF
    We show that quantum mechanics predicts a contradiction with local hidden variable theories for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new premise, macroscopic local realism.Comment: 9 pages 3 figure

    Micro-Arcsecond Radio Astrometry

    Full text link
    Astrometry provides the foundation for astrophysics. Accurate positions are required for the association of sources detected at different times or wavelengths, and distances are essential to estimate the size, luminosity, mass, and ages of most objects. Very Long Baseline Interferometry at radio wavelengths, with diffraction-limited imaging at sub-milliarcsec resolution, has long held the promise of micro-arcsecond astrometry. However, only in the past decade has this been routinely achieved. Currently, parallaxes for sources across the Milky Way are being measured with ~10 uas accuracy and proper motions of galaxies are being determined with accuracies of ~1 uas/y. The astrophysical applications of these measurements cover many fields, including star formation, evolved stars, stellar and super-massive black holes, Galactic structure, the history and fate of the Local Group, the Hubble constant, and tests of general relativity. This review summarizes the methods used and the astrophysical applications of micro-arcsecond radio astrometry.Comment: To appear in Annual Reviews of Astronomy and Astrophysics (2014
    corecore