132 research outputs found
Recommended from our members
Microfluidic Platform for Adherent Single Cell High-Throughput Screening
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.Traditionally, in vitro investigations on biology and physiology of cells rely on averaging the
responses eliciting from heterogeneous cell populations, thus being unsuitable for assessing individual cell
behaviors in response to external stimulations. In the last years, great interest has thus been focused on single
cell analysis and screening, which represents a promising tool aiming at pursuing the direct and deterministic
control over cause-effect relationships guiding cell behavior. In this regard, a high-throughput microfluidic
platform for trapping and culturing adherent single cells was presented. A single cell trapping mechanism
was implemented based on dynamic variation of fluidic resistances. A round-shaped culture chamber
(Φ=250μm, h=25μm) was conceived presenting two connections with a main fluidic path: (i) an upper wide
opening, and (ii) a bottom trapping junction which modulates the hydraulic resistance. Several layouts of the
chamber were designed and computationally validated for the optimization of the single cell trapping
efficacy. The optimized chamber layouts were integrated in a polydimethylsiloxane (PDMS) microfluidic
platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a chaoticmixer
based serial dilution generator for delivering both soluble factors and non-diffusive molecules under
spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed for
trapping individual U87-MG (human glioblastoma-astrocytoma epithelial-like) cells and culturing them up to
3 days
Recommended from our members
Realization and efficiency evaluation of a micro-photocatalytic cell prototype for real-time blood oxygenation
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.A novel approach to blood oxygenation is presented. Microfluidic channels molded out of PDMS (using standard soft lithography techniques) work as photocatalytic cells, where the coupling of anatase titanium dioxide (TiO2) thin films and platinum electrodes, allow an electrically assisted photocatalytic reaction to produce dissolved oxygen gas from the water content of the flowing blood. The thin films were deposited onto quartz glass substrates at room temperature (300K) using reactive RF sputtering with a Ti metal target. The results of the current study, as a proof of concept, have shown that the device can generate oxygen at a rate of 4.06×10-3 mM O2/(cm2 min) and oxygenate venous blood to the oxygen saturation level of arterial blood
High-throughput microfluidic platform for adherent single cells non-viral gene delivery
The widespread use of gene therapy as a therapeutic tool relies on the development of DNA-carrying vehicles devoid of any safety concerns. In contrast to viral vectors, non-viral gene carriers show promise in this perspective, although their low transfection efficiency leads to the necessity to carry out further optimizations. In order to overcome the limitations of traditional macroscale approaches, which mainly consist of time-consuming and simplified models, a microfluidic strategy has been developed to carry out transfection studies on single cells in a high-throughput and deterministic fashion. A single cell trapping mechanism has been implemented, based on the dynamic variation of fluidic resistances. For this purpose, we designed a round-shaped culture chamber integrated with a bottom trapping junction, which modulates the hydraulic resistance. Several layouts of the chamber were designed and computationally validated for optimization of the single cell trapping efficacy. The optimized chamber layout was integrated in a polydimethylsiloxane (PDMS) microfluidic platform presenting two main functionalities: (i) 288 chambers for trapping single cells, and (ii) a serial dilution generator with chaotic mixing properties, able to deliver to the chambers both soluble factors and non-diffusive particles (i.e., polymer/DNA complexes, polyplexes) under spatio-temporally controlled chemical patterns. The devices were experimentally validated and allowed the trapping of individual human glioblastoma–astrocytoma epithelial-like cells (U87-MG) with a trapping efficacy of about 40%. The cells were cultured within the device and underwent preliminary transfection experiments using 25 kDa linear polyethylenimine (lPEI)-based polyplexes, confirming the potentiality of the proposed platform for the future high-throughput screening of gene delivery vectors and for the optimization of transfection protocols
High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes
The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a ‘developmental engineering’ approach for skeletal tissue regeneration
Recommended from our members
Micromixing and microchannel design: Vortex shape and entropy
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.In very recent years microdevices, due to their potency in replacing large-scale conventional laboratory instrumentation, are becoming a fast and low cost technology for the treatment of several chemical and biological processes. In particular microfluidics has been massively investigated, aiming at improving the performance of chemical reactors. This is because of the fact that reaction is often an interface phenomenon where the greater the surface to volume ratio, the higher the reaction speed, and microscale mixing increases the interfacial area (in terms of mixing-induced-by-vortices generation). However, microfluidic systems suffer from the limitation that they are characterized mostly by very low Reynolds numbers, with the consequence that (i) they cannot take advantage from the turbulence mixing support, and (ii) viscosity hampers proper vortex detection. Therefore, the proper design of micro-channels (MCs) becomes essential. In this framework, several geometries have been proposed to induce mixing vortices in MCs. However a quantitative comparison between proposed geometries in terms of their passive mixing
potency can be done only after proper definition of vortex formation (topology, size) and mixing performance. The objective of this study is to test the ability of different fluid dynamic metrics in vortex
detection and mixing effectiveness in micromixers. This is done numerically solving different conditions for the flow in a classic passive mixer, a ring shaped MC. We speculate that MCs design could take advantage from fluidic metrics able to rank properly flow related mixing
Microfabricated polyester conical microwells for cell culture applications.
Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required
LivHeart: A Multi Organ-on-Chip Platform to Study Off-Target Cardiotoxicity of Drugs Upon Liver Metabolism
The drug discovery and development process is still long, costly, and highly risky. The principal attrition factor is undetected toxicity, with hepatic and cardiac toxicities playing a critical role and being the main responsible of safety-related drug withdrawals from the market. Multi Organs-on-Chip (MOoC) represent a disruptive solution to study drug-related effects on several organs simultaneously and to efficiently predict drug toxicity in preclinical trials. Specifically focusing on drug safety, different technological features are applied here to develop versatile MOoC platforms encompassing two culture chambers for generating and controlling the type of communication between a metabolically competent liver model and a functional 3D heart model. The administration of the drug Terfenadine, a cardiotoxic compound liver-metabolized into the noncardiotoxic Fexofenadine, proved that liver metabolism and a fine control over drug diffusion are fundamental to elicit a physio-pathological cardiac response. From these results, an optimized LivHeart platform is developed to house a liver model and a cardiac construct that can be mechanically trained to achieve a beating microtissue, whose electrophysiology can be directly recorded in vitro. The platform is proved able to predict off-target cardiotoxicity of Terfenadine after liver metabolism both in terms of cell viability and functionality
Recommended from our members
Lab-on-Chip for Testing Myelotoxic Effect of Drugs and Chemicals
This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In the last twenty years, one of the main goals in the drug discovery field has been the development
of reliable in vitro models. In particular, in 2006 the European Centre for the Validation of Alternative
Methods (ECVAM) has approved the Colony forming Unit-Granulocytes-Macrophages (CFU-GM) test,
which is the first and currently unique test applied to evaluate the myelotoxicity of xenobiotics in vitro. The
present work aimed at miniaturizing this in vitro assay by developing and validating a Lab-on-Chip (LoC)
platform consisting of a high number of bioreactor chambers with screening capabilities in a high-throughput
regime
Fabrication of 3D cell-laden hydrogel microstructures through photo-mold patterning
Native tissues are characterized by spatially organized three-dimensional (3D) microscaled units which functionally define cells–cells and cells–extracellular matrix interactions. The ability to engineer biomimetic constructs mimicking these 3D microarchitectures is subject to the control over cell distribution and organization. In the present study we introduce a novel protocol to generate 3D cell laden hydrogel micropatterns with defined size and shape. The method, named photo-mold patterning (PMP), combines hydrogel micromolding within polydimethylsiloxane (PDMS) stamps and photopolymerization through a recently introduced biocompatible ultraviolet (UVA) activated photoinitiator (VA-086). Exploiting PDMS micromolds as geometrical constraints for two methacrylated prepolymers (polyethylene glycol diacrylate and gelatin methacrylate), micrometrically resolved structures were obtained within a 3 min exposure to a low cost and commercially available UVA LED. The PMP was validated both on a continuous cell line (human umbilical vein endothelial cells expressing green fluorescent protein, HUVEC GFP) and on primary human bone marrow stromal cells (BMSCs). HUVEC GFP and BMSCs were exposed to 1.5% w/v VA-086 and UVA light (1 W, 385 nm, distance from sample = 5 cm). Photocrosslinking conditions applied during the PMP did not negatively affect cells viability or specific metabolic activity. Quantitative analyses demonstrated the potentiality of PMP to uniformly embed viable cells within 3D microgels, creating biocompatible and favorable environments for cell proliferation and spreading during a seven days' culture. PMP can thus be considered as a promising and cost effective tool for designing spatially accurate in vitro models and, in perspective, functional constructs
Bioengineered tooth emulation systems for regenerative and pharmacological purposes
Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and "organ-on-a-chip" microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing
- …