152 research outputs found

    Sympathetic Cooling of Lithium by Laser-cooled Cesium

    Get PDF
    We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO2_2 laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields an estimate for the Li-Cs cross-section.Comment: 4 pages, proceedings of ICOLS 200

    Atom-molecule collisions in an optically trapped gas

    Full text link
    Cold inelastic collisions between confined cesium (Cs) atoms and Cs_2\_2 molecules are investigated inside a CO_2\_2 laser dipole trap. Inelastic atom-molecule collisions can be observed and measured with a rate coefficient of ∼2.5×10−11\sim 2.5 \times 10^{-11} cm3^3 s−1^{-1}, mainly independent of the molecular ro-vibrational state populated. Lifetimes of purely atomic and molecular samples are essentially limited by rest gas collisions. The pure molecular trap lifetime ranges 0,3-1 s, four times smaller than the atomic one, as is also observed in a pure magnetic trap. We give an estimation of the inelastic molecule-molecule collision rate to be ∼10−11\sim 10^{-11} cm3^{3} s−1^{-1}

    Mixture of ultracold lithium and cesium atoms in an optical dipole trap

    Full text link
    We present the first simultaneous trapping of two different ultracold atomic species in a conservative trap. Lithium and cesium atoms are stored in an optical dipole trap formed by the focus of a CO2_2 laser. Techniques for loading both species of atoms are discussed and observations of elastic and inelastic collisions between the two species are presented. A model for sympathetic cooling of two species with strongly different mass in the presence of slow evaporation is developed. From the observed Cs-induced evaporation of Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected evaporation formulas and some postscript problem

    Kilohertz laser ablation for doping helium nanodroplets

    Full text link
    A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam-depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the non-volatile DNA basis Guanine is found to be efficient and a number of oligomers are detected
    • …
    corecore