50 research outputs found
The Role of Multilevel Landau-Zener Interference in Extreme Harmonic Generation
Motivated by the observation of multiphoton electric dipole spin resonance
processes in InAs nanowires, we theoretically study the transport dynamics of a
periodically driven five-level system, modeling the level structure of a
two-electron double quantum dot. We show that the observed multiphoton
resonances, which are dominant near interdot charge transitions, are due to
multilevel Landau-Zener-Stuckelberg-Majorana interference. Here a third energy
level serves as a shuttle that transfers population between the two resonant
spin states. By numerically integrating the master equation we replicate the
main features observed in the experiments: multiphoton resonances (as large as
8 photons), a robust odd-even dependence, and oscillations in the electric
dipole spin resonance signal as a function of energy level detuning
Resonant spin-dependent electron coupling in a III-V/II-VI heterovalent double quantum well
We report on design, fabrication, and magnetooptical studies of a III-V/II-VI
hybrid structure containing a GaAs/AlGaAs/ZnSe/ZnCdMnSe double quantum well
(QW). The structure design allows one to tune the QW levels into the resonance,
thus facilitating penetration of the electron wave function from the diluted
magnetic semiconductor ZnCdMnSe QW into the nonmagnetic GaAs QW and vice versa.
Magneto-photoluminescence studies demonstrate level anticrossing and strong
intermixing resulting in a drastic renormalization of the electron effective g
factor, in perfect agreement with the energy level calculations.Comment: 4 pages, 5 Postscript figures, uses revtex
Optical orientation of electron spins in GaAs quantum wells
We present a detailed experimental and theoretical analysis of the optical
orientation of electron spins in GaAs/AlAs quantum wells. Using time and
polarization resolved photoluminescence excitation spectroscopy, the initial
degree of electron spin polarization is measured as a function of excitation
energy for a sequence of quantum wells with well widths between 63 Ang and 198
Ang. The experimental results are compared with an accurate theory of excitonic
absorption taking fully into account electron-hole Coulomb correlations and
heavy-hole light-hole coupling. We find in wide quantum wells that the measured
initial degree of polarization of the luminescence follows closely the spin
polarization of the optically excited electrons calculated as a function of
energy. This implies that the orientation of the electron spins is essentially
preserved when the electrons relax from the optically excited high-energy
states to quasi-thermal equilibrium of their momenta. Due to initial spin
relaxation, the measured polarization in narrow quantum wells is reduced by a
constant factor that does not depend on the excitation energy.Comment: 12 pages, 9 figure
Extreme Harmonic Generation in Electrically Driven Spin Resonance
We report the observation of multiple harmonic generation in electric dipole
spin resonance in an InAs nanowire double quantum dot. The harmonics display a
remarkable detuning dependence: near the interdot charge transition as many as
eight harmonics are observed, while at large detunings we only observe the
fundamental spin resonance condition. The detuning dependence indicates that
the observed harmonics may be due to Landau-Zener transition dynamics at
anticrossings in the energy level spectrum.Comment: Related papers at http://pettagroup.princeton.ed
Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures
We present a complete description of spin injection and detection in
Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K.
Measurements of the steady-state spin polarization in the semiconductor
indicate three temperature regimes for spin transport and relaxation. At
temperatures below 70 K, spin-polarized electrons injected into quantum well
structures form excitons, and the spin polarization in the quantum well depends
strongly on the electrical bias conditions. At intermediate temperatures, the
spin polarization is determined primarily by the spin relaxation rate for free
electrons in the quantum well. This process is slow relative to the excitonic
spin relaxation rate at lower temperatures and is responsible for a broad
maximum in the spin polarization between 100 and 200 K. The spin injection
efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher
temperatures, although a steady-state spin polarization of at least 6 % is
observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let
Spin relaxation of conduction electrons in bulk III-V semiconductors
Spin relaxation time of conduction electrons through the Elliot-Yafet,
D'yakonov-Perel and Bir-Aronov-Pikus mechanisms is calculated theoretically for
bulk GaAs, GaSb, InAs and InSb of both - and -type. Relative importance
of each spin relaxation mechanism is compared and the diagrams showing the
dominant mechanism are constructed as a function of temperature and impurity
concentrations. Our approach is based upon theoretical calculation of the
momentum relaxation rate and allows understanding of the interplay between
various factors affecting the spin relaxation over a broad range of temperature
and impurity concentration.Comment: an error in earlier version correcte
Polarization Control of the Non-linear Emission on Semiconductor Microcavities
The degree of circular polarization () of the non-linear emission in
semiconductor microcavities is controlled by changing the exciton-cavity
detuning. The polariton relaxation towards \textbf{K} cavity-like
states is governed by final-state stimulated scattering. The helicity of the
emission is selected due to the lifting of the degeneracy of the spin
levels at \textbf{K} . At short times after a pulsed excitation
reaches very large values, either positive or negative, as a result of
stimulated scattering to the spin level of lowest energy ( spin for
positive/negative detuning).Comment: 8 pages, 3 eps figures, RevTeX, Physical Review Letters (accepted
Spin dynamics of low-dimensional excitons due to acoustic phonons
We investigate the spin dynamics of excitons interacting with acoustic
phonons in quantum wells, quantum wires and quantum disks by employing a
multiband model based on the Luttinger Hamiltonian. We also use the
Bir-Pikus Hamiltonian to model the coupling of excitons to both longitudinal
acoustic phonons and transverse acoustic phonons, thereby providing us with a
realistic framework in which to determine details of the spin dynamics of
excitons. We use a fractional dimensional formulation to model the excitonic
wavefunctions and we demonstrate explicitly the decrease of spin relaxation
time with dimensionality. Our numerical results are consistent with
experimental results of spin relaxation times for various configurations of the
GaAs/AlGaAs material system. We find that longitudinal and
transverse acoustic phonons are equally significant in processes of exciton
spin relaxations involving acoustic phonons.Comment: 24 pages, 3 figure
Collective oscillations driven by correlation in the nonlinear optical regime
We present an analytical and numerical study of the coherent exciton
polarization including exciton-exciton correlation. The time evolution after
excitation with ultrashort optical pulses can be divided into a slowly varying
polarization component and novel ultrafast collective modes. The frequency and
damping of the collective modes are determined by the high-frequency properties
of the retarded two-exciton correlation function, which includes Coulomb
effects beyond the mean-field approximation. The overall time evolution depends
on the low-frequency spectral behavior. The collective mode, well separated
from the slower coherent density evolution, manifests itself in the coherent
emission of a resonantly excited excitonic system, as demonstrated numerically.Comment: 4 pages, 4 figures, accepted for publication in Physical Review
Letter