41 research outputs found
Spin-to-Orbital Angular Momentum Conversion and Spin-Polarization Filtering in Electron Beams
We propose the design of a space-variant Wien filter for electron beams that
induces a spin half-turn and converts the corresponding spin angular momentum
variation into orbital angular momentum of the beam itself by exploiting a
geometrical phase arising in the spin manipulation. When applied to a spatially
coherent input spin-polarized electron beam, such a device can generate an
electron vortex beam, carrying orbital angular momentum. When applied to an
unpolarized input beam, the proposed device, in combination with a suitable
diffraction element, can act as a very effective spin-polarization filter. The
same approach can also be applied to neutron or atom beams.Comment: 9 pages, 5 figure
Magnetoresistance, Micromagnetism, and Domain Wall Scattering in Epitaxial hcp Co Films
Large negative magnetoresistance (MR) observed in transport measurements of
hcp Co films with stripe domains were recently reported and interpreted in
terms of a novel domain wall (DW) scattering mechanism. Here detailed MR
measurements, magnetic force microscopy, and micromagnetic calculations are
combined to elucidate the origin of MR in this material. The large negative
room temperature MR reported previously is shown to be due to ferromagnetic
resistivity anisotropy. Measurements of the resistivity for currents parallel
(CIW) and perpendicular to DWs (CPW) have been conducted as a function of
temperature. Low temperature results show that any intrinsic effect of DWs
scattering on MR of this material is very small compared to the anisotropic MR.Comment: 5 pages, 5 Figures, submitted to PR
High resolution measurement and modelling of magnetic domain structures in epitaxial FePd (001) L10 films with perpendicular magnetization
Magnetic domain structures in two 50 nm thick chemically-ordered FePd (001) epitaxial films with different perpendicular anisotropies have been studied using Lorentz microscopy. Domain and domain wall structures vary significantly according to the magnitude of the anisotropy. For lower anisotropy films, a stripe domain structure with a period of ≈100 nm is formed in which there is a near-continuous variation in orientation of the magnetization vector. By contrast, in the film with higher anisotropy, a maze-like domain structure is supported. The magnetization within domains is perpendicular to the film plane and adjacent domains are separated by narrow walls, less than 20 nm wide. Micromagnetic modelling is generally in good quantitative agreement with experimental observations and provides additional information on the domain wall structure
Magnetoresistance behavior of bi-component antidot nanostructures
10.1209/0295-5075/103/67002EPL1036
Aberration-corrected multipole Wien filter for energy-filtered x-ray photoemission electron microscopy
The aberration of a multipole Wien filter for energy-filtered x-ray photoemission electron microscopy was analyzed and the optimized Fourier components of the electric and magnetic fields for the third-order aperture aberration corrections were obtained. It was found that the third-order aperture aberration correction requires 12 electrodes and magnetic poles. ©2007 American Institute of Physic