12 research outputs found
Finite-Size Scaling of the Level Compressibility at the Anderson Transition
We compute the number level variance and the level
compressibility from high precision data for the Anderson model of
localization and show that they can be used in order to estimate the critical
properties at the metal-insulator transition by means of finite-size scaling.
With , , and denoting, respectively, system size, disorder strength,
and the average number of levels in units of the mean level spacing, we find
that both and the integrated obey finite-size scaling.
The high precision data was obtained for an anisotropic three-dimensional
Anderson model with disorder given by a box distribution of width . We
compute the critical exponent as and the critical
disorder as in agreement with previous
transfer-matrix studies in the anisotropic model. Furthermore, we find
at the metal-insulator transition in very close
agreement with previous results.Comment: Revised version of paper, to be published: Eur. Phys. J. B (2002
The Anderson Transition in Two-Dimensional Systems with Spin-Orbit Coupling
We report a numerical investigation of the Anderson transition in
two-dimensional systems with spin-orbit coupling. An accurate estimate of the
critical exponent for the divergence of the localization length in this
universality class has to our knowledge not been reported in the literature.
Here we analyse the SU(2) model. We find that for this model corrections to
scaling due to irrelevant scaling variables may be neglected permitting an
accurate estimate of the exponent
Effects of Scale-Free Disorder on the Anderson Metal-Insulator Transition
We investigate the three-dimensional Anderson model of localization via a
modified transfer-matrix method in the presence of scale-free diagonal disorder
characterized by a disorder correlation function decaying asymptotically
as . We study the dependence of the localization-length exponent
on the correlation-strength exponent . % For fixed disorder ,
there is a critical , such that for ,
and for , remains that of the
uncorrelated system in accordance with the extended Harris criterion. At the
band center, is independent of but equal to that of the
uncorrelated system. The physical mechanisms leading to this different behavior
are discussed.Comment: submitted to Phys. Rev. Let
Energy level statistics of a critical random matrix ensemble
We study level statistics of a critical random matrix ensemble of a power-law
banded complex Hermitean matrices. We compute numerically the level
compressibility via the level number variance and compare it with the
analytical formula for the exactly solvable model of Moshe, Neuberger and
Shapiro.Comment: 8 pages, 3 figure
Renormalization group approach to energy level statistics at the integer quantum Hall transition
We extend the real-space renormalization group (RG) approach to the study of
the energy level statistics at the integer quantum Hall (QH) transition.
Previously it was demonstrated that the RG approach reproduces the critical
distribution of the {\em power} transmission coefficients, i.e., two-terminal
conductances, , with very high accuracy. The RG flow of
at energies away from the transition yielded the value of the critical
exponent, , that agreed with most accurate large-size lattice simulations.
To obtain the information about the level statistics from the RG approach, we
analyze the evolution of the distribution of {\em phases} of the {\em
amplitude} transmission coefficient upon a step of the RG transformation. From
the fixed point of this transformation we extract the critical level spacing
distribution (LSD). This distribution is close, but distinctively different
from the earlier large-scale simulations. We find that away from the transition
the LSD crosses over towards the Poisson distribution. Studying the change of
the LSD around the QH transition, we check that it indeed obeys scaling
behavior. This enables us to use the alternative approach to extracting the
critical exponent, based on the LSD, and to find very close
to the value established in the literature. This provides additional evidence
for the surprising fact that a small RG unit, containing only five nodes,
accurately captures most of the correlations responsible for the
localization-delocalization transition.Comment: 10 pages, 11 figure
Analytic Trajectories for Mobility Edges in the Anderson Model
A basis of Bloch waves, distorted locally by the random potential, is
introduced for electrons in the Anderson model. Matrix elements of the
Hamiltonian between these distorted waves are averages over infinite numbers of
independent site-energies, and so take definite values rather than
distributions of values. The transformed Hamiltonian is ordered, and may be
interpreted as an itinerant electron interacting with a spin on each site. In
this new basis, the distinction between extended and localized states is clear,
and edges of the bands of extended states, the mobility edges, are calculated
as a function of disorder. In two dimensions these edges have been found in
both analytic and numerical applications of tridiagonalization, but they have
not been found in analytic approaches based on perturbation theory, or the
single-parameter scaling hypothesis; nor have they been detected in numerical
approaches based on scaling or critical distributions of level spacing. In both
two and three dimensions the mobility edges in this work are found to separate
with increasing disorder for all disorders, in contrast with the results of
calculation using numerical scaling for three dimensions. The analytic
trajectories are compared with recent results of numerical tridiagonalization
on samples of over 10^9 sites. This representation of the Anderson model as an
ordered interacting system implies that in addition to transitions at mobility
edges, the Anderson model contains weaker transitions characterized by critical
disorders where the band of extended states decouples from individual sites;
and that singularities in the distribution of site energies, rather than its
second moment, determine localization properties of the Anderson model.Comment: 32 pages, 2 figure
A Unified Algebraic Approach to Few and Many-Body Correlated Systems
The present article is an extended version of the paper {\it Phys. Rev.} {\bf
B 59}, R2490 (1999), where, we have established the equivalence of the
Calogero-Sutherland model to decoupled oscillators. Here, we first employ the
same approach for finding the eigenstates of a large class of Hamiltonians,
dealing with correlated systems. A number of few and many-body interacting
models are studied and the relationship between their respective Hilbert
spaces, with that of oscillators, is found. This connection is then used to
obtain the spectrum generating algebras for these systems and make an algebraic
statement about correlated systems. The procedure to generate new solvable
interacting models is outlined. We then point out the inadequacies of the
present technique and make use of a novel method for solving linear
differential equations to diagonalize the Sutherland model and establish a
precise connection between this correlated system's wave functions, with those
of the free particles on a circle. In the process, we obtain a new expression
for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having
Laughlin wave function as the ground-state and point out the natural emergence
of the underlying linear symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review