3,309 research outputs found
Review of Western Australian drug driving laws
In 2007, the Western Australian Road Traffic Act 1974 was amended to allow for new police enforcement practices designed to reduce the incidence of drug driving. The Road Traffic Amendment (Drugs) Act 2007 made provision for two new offences: driving with the presence of a prescribed illicit drug in oral fluid or blood, and driving while impaired by a drug. The prescribed drugs were methamphetamine, methylenedioxymethamphetamine (MDMA or ecstasy) and delta-9-tetrahydrocannabinol (THC, the psychoactive compound in cannabis). As part of the new laws, statute 72A was inserted into the Act requiring that the Western Australian State Government undertake a review of the amended legislation after 12 months of operation. This report provides a review of the amended legislation and the associated drug driving law enforcement. It includes a process review of the roadside oral fluid testing and drug impaired driving enforcement programs; an analysis of testing, offence detection and legal penalty data pertaining to the first year of operation of the new drug enforcement measures; and a report on consultations with various stakeholders. These form the basis for recommendations on possible improvements to the processes and legislation related to the deterrence of driving after drug use among Western Australian drivers.J.E. Woolley and M.R.J. Baldoc
Nonlinear metrology with a quantum interface
We describe nonlinear quantum atom-light interfaces and nonlinear quantum
metrology in the collective continuous variable formalism. We develop a
nonlinear effective Hamiltonian in terms of spin and polarization collective
variables and show that model Hamiltonians of interest for nonlinear quantum
metrology can be produced in Rb ensembles. With these Hamiltonians,
metrologically relevant atomic properties, e.g. the collective spin, can be
measured better than the "Heisenberg limit" . In contrast to other
proposed nonlinear metrology systems, the atom-light interface allows both
linear and non-linear estimation of the same atomic quantities.Comment: 8 pages, 1 figure
Analysis and simulation of a magnetic bearing suspension system for a laboratory model annular momentum control device
A linear analysis and the results of a nonlinear simulation of a magnetic bearing suspension system which uses permanent magnet flux biasing are presented. The magnetic bearing suspension is part of a 4068 N-m-s (3000 lb-ft-sec) laboratory model annular momentum control device (AMCD). The simulation includes rigid body rim dynamics, linear and nonlinear axial actuators, linear radial actuators, axial and radial rim warp, and power supply and power driver current limits
Quantum interface between an electrical circuit and a single atom
We show how to bridge the divide between atomic systems and electronic
devices by engineering a coupling between the motion of a single ion and the
quantized electric field of a resonant circuit. Our method can be used to
couple the internal state of an ion to the quantized circuit with the same
speed as the internal-state coupling between two ions. All the well-known
quantum information protocols linking ion internal and motional states can be
converted to protocols between circuit photons and ion internal states. Our
results enable quantum interfaces between solid state qubits, atomic qubits,
and light, and lay the groundwork for a direct quantum connection between
electrical and atomic metrology standards.Comment: Supplemental material available on reques
Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies
Two-photon quantum interference at a beam splitter, commonly known as
Hong-Ou-Mandel interference, was recently demonstrated with
\emph{microwave-frequency} photons by Lang \emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-order
cross-correlation and auto-correlation functions of the microwave fields at the
outputs of the beam splitter. Here we present the calculation of these
correlation functions for the cases of inputs corresponding to: (i) trains of
\emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii)
resonant fluorescent microwave fields from \emph{continuously-driven} circuit
QED systems. The calculations include the effects of the finite bandwidth of
the detection scheme. In both cases, the signature of two-photon quantum
interference is a suppression of the second-order cross-correlation function
for small delays. The experiment described in Ref.
\onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian}
single photons, and very good agreement between the calculations and the
experimental data was obtained.Comment: 11 pages, 3 figure
Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED
We propose a scheme for the quantum non-demolition (QND) measurement of Fock
states of a nanomechanical resonator via feedback control of a coupled circuit
QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and
microwave cavity. The CPB is read-out via homodyne detection on the cavity and
feedback control is used to effect a non-dissipative measurement of the CPB.
This realizes an indirect QND measurement of the nanoresonator via a
second-order coupling of the CPB to the nanoresonator number operator. The
phonon number of the Fock state may be determined by integrating the stochastic
master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure
- …