1,708 research outputs found
Structure and evolution of Cenozoic arc magmatism on the Antarctic Peninsula: a high resolution aeromagnetic perspective
The Antarctic Peninsula (AP) consists of a long lived and uniquely well preserved magmatic arc system. The broad tectonic structure of the AP arc is well understood. However, magmatic processes occurring along the arc are only constrained by regional geophysical and relatively sparse geological data. Key questions remain about the timing, volume, and structural controls on magma emplacement. We present new high resolution aeromagnetic data across Adelaide Island, on the western margin of the AP revealing the complex structure of the AP arc/forearc boundary. Using digital enhancement, 2-D modelling and 3-D inversion we constrain the form of the magnetic sources at the arc/forearc boundary. Our interpretation of these magnetic data, guided by geological evidence and new zircon U-Pb dating, suggests significant Palaeogene to Neogene magmatism formed ∼25 per cent of the upper crust in this region (∼7500 km3). Significant structural control on Neogene magma emplacement along the arc/forearc boundary is also revealed. We hypothesize that this Neogene magmatism reflects mantle return flow through a slab window generated by Late Palaeogene cessation of subduction south of Adelaide Island. This mantle process may have affected the final stages of arc magmatism along the AP margin
The Importance of Eurekan Mountains on Cenozoic Sediment Routing on the Western Barents She
The importance of topography generated by Eocene Eurekan deformation as a sediment source for sandstones deposited on the western Barents Shelf margin is evaluated through a sediment provenance study conducted on wellbore materials retrieved from Spitsbergen and from the Vestbakken Volcanic Province and the Sørvestsnaget Basin in the southwest Barents Sea. A variety of complementary techniques record a provenance change across the Paleocene-Eocene boundary in wellbore BH 10-2008, which samples Paleogene strata of the Central Tertiary Basin in Spitsbergen. Sandstones containing K-feldspar with radiogenic Pb isotopic compositions, chrome spinel in the heavy mineral assemblage, and detrital zircons and rutiles with prominent Palaeoproterozoic and Late Palaeozoic—Early Mesozoic U-Pb age populations are up-section replaced by sandstone containing albitic plagioclase feldspar, metasedimentary schist rock fragments, a heavy mineral assemblage with abundant chloritoid, metamorphic apatite with low REE contents, metapelitic rutile with Silurian U-Pb ages and zircons with predominantly Archaean and Palaeoproterozoic U-Pb age populations. Our results clearly demonstrate the well-known regional change in source area from an exposed Barents Shelf terrain east of the Central Tertiary Basin during the Paleocene to the emerging Eurekan mountains west and north of the Central Tertiary Basin during the Eocene. Eocene sandstones deposited in the marginal basins of the southwestern Barents Shelf, which were sampled in wellbores 7316/5-1 and 7216/11-1S, contain elements of both the Eurekan and the eastern Barents Shelf provenance signatures. The mixing of the two sand types and delivery to the southwest margin of the Barents Shelf is consistent with a fill and spill model for the Central Teritary Basin, with transport of Eurekan-derived sediment east then south hundreds of kilometres across the Shelf
Fertility, Living Arrangements, Care and Mobility
There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed
Calibrating ensemble reliability whilst preserving spatial structure
Ensemble forecasts aim to improve decision-making by predicting a set of possible outcomes. Ideally, these would provide probabilities which are both sharp and reliable. In practice, the models, data assimilation and ensemble perturbation systems are all imperfect, leading to deficiencies in the predicted probabilities. This paper presents an ensemble post-processing scheme which directly targets local reliability, calibrating both climatology and ensemble dispersion in one coherent operation. It makes minimal assumptions about the underlying statistical distributions, aiming to extract as much information as possible from the original dynamic forecasts and support statistically awkward variables such as precipitation. The output is a set of ensemble members preserving the spatial, temporal and inter-variable structure from the raw forecasts, which should be beneficial to downstream applications such as hydrological models. The calibration is tested on three leading 15-d ensemble systems, and their aggregation into a simple multimodel ensemble. Results are presented for 12 h, 1° scale over Europe for a range of surface variables, including precipitation. The scheme is very effective at removing unreliability from the raw forecasts, whilst generally preserving or improving statistical resolution. In most cases, these benefits extend to the rarest events at each location within the 2-yr verification period. The reliability and resolution are generally equivalent or superior to those achieved using a Local Quantile-Quantile Transform, an established calibration method which generalises bias correction. The value of preserving spatial structure is demonstrated by the fact that 3×3 averages derived from grid-scale precipitation calibration perform almost as well as direct calibration at 3×3 scale, and much better than a similar test neglecting the spatial relationships. Some remaining issues are discussed regarding the finite size of the output ensemble, variables such as sea-level pressure which are very reliable to start with, and the best way to handle derived variables such as dewpoint depression
Monitoring international migration flows in Europe. Towards a statistical data base combining data from different sources
The paper reviews techniques developed in demography, geography and statistics that are useful for bridging the gap between available data on international migration flows and the information required for policy making and research. The basic idea of the paper is as follows: to establish a coherent and consistent data base that contains sufficiently detailed, up-to-date and accurate information, data from several sources should be combined. That raises issues of definition and measurement, and of how to combine data from different origins properly. The issues may be tackled more easily if the statistics that are being compiled are viewed as different outcomes or manifestations of underlying stochastic processes governing migration. The link between the processes and their outcomes is described by models, the parameters of which must be estimated from the available data. That may be done within the context of socio-demographic accounting. The paper discusses the experience of the U.S. Bureau of the Census in combining migration data from several sources. It also summarizes the many efforts in Europe to establish a coherent and consistent data base on international migration.
The paper was written at IIASA. It is part of the Migration Estimation Study, which is a collaborative IIASA-University of Groningen project, funded by the Netherlands Organization for Scientific Research (NWO). The project aims at developing techniques to obtain improved estimates of international migration flows by country of origin and country of destination
X-ray line coincidence photopumping in a solar flare
Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 Å by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 Å is photopumped by He-like Na X at 11.003 Å, which predicts significant intensity enhancement in the Ne IX 82.76 Å transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially unresolved, astronomical sources
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson
- …