5 research outputs found
Nonequilibrium nuclear-electron spin dynamics in semiconductor quantum dots
We study the spin dynamics in charged quantum dots in the situation where the
resident electron is coupled to only about 200 nuclear spins and where the
electron spin splitting induced by the Overhauser field does not exceed
markedly the spectral broadening. The formation of a dynamical nuclear
polarization as well as its subsequent decay by the dipole-dipole interaction
is directly resolved in time. Because not limited by intrinsic nonlinearities,
almost complete nuclear polarization is achieved, even at elevated
temperatures. The data suggest a nonequilibrium mode of nuclear polarization,
distinctly different from the spin temperature concept exploited on bulk
semiconductorsComment: 5 pages, 4 figure
Evidence for the Role of Instantons in Hadron Structure from Lattice QCD
Cooling is used as a filter on a set of gluon fields sampling the Wilson
action to selectively remove essentially all fluctuations of the gluon field
except for the instantons. The close agreement between quenched lattice QCD
results with cooled and uncooled configurations for vacuum correlation
functions of hadronic currents and for density-density correlation functions in
hadronic bound states provides strong evidence for the dominant role of
instantons in determining light hadron structure and quark propagation in the
QCD vacuum.Comment: 26 pages in REVTeX, plus 10 figures, uuencoded. Submitted to Physical
Review D. MIT-CTP-226
Two-photon spin injection in semiconductors
A comparison is made between the degree of spin polarization of electrons
excited by one- and two-photon absorption of circularly polarized light in bulk
zincblende semiconductors. Time- and polarization-resolved experiments in
(001)-oriented GaAs reveal an initial degree of spin polarization of 49% for
both one- and two-photon spin injection at wavelengths of 775 and 1550 nm, in
agreement with theory. The macroscopic symmetry and microscopic theory for
two-photon spin injection are reviewed, and the latter is generalized to
account for spin-splitting of the bands. The degree of spin polarization of
one- and two-photon optical orientation need not be equal, as shown by
calculations of spectra for GaAs, InP, GaSb, InSb, and ZnSe using a 14x14 k.p
Hamiltonian including remote band effects. By including the higher conduction
bands in the calculation, cubic anisotropy and the role of allowed-allowed
transitions can be investigated. The allowed-allowed transitions do not
conserve angular momentum and can cause a high degree of spin polarization
close to the band edge; a value of 78% is calculated in GaSb, but by varying
the material parameters it could be as high as 100%. The selection rules for
spin injection from allowed-allowed transitions are presented, and interband
spin-orbit coupling is found to play an important role.Comment: 12 pages including 7 figure