3,434 research outputs found
Reconstruction of semileptonically decaying beauty hadrons produced in high energy pp collisions
It is well known that in hadron decays with a single unreconstructible
final state particle, the decay kinematics can be solved up to a quadratic
ambiguity, without any knowledge of the hadron momentum. We present a
method to infer the momenta of hadrons produced in hadron collider
experiments using information from their reconstructed flight vectors. Our
method is strictly agnostic to the decay itself, which implies that it can be
validated with control samples of topologically similar decays to fully
reconstructible final states. A multivariate regression algorithm based on the
flight information provides a hadron momentum estimate with a resolution of
around 60% which is sufficient to select the correct solution to the quadratic
equation in around 70% of cases. This will improve the ability of hadron
collider experiments to make differential decay rate measurements with
semileptonic hadron decays.Comment: 18 pages, 17 figures. Updated version to be published in JHE
LHCb trigger streams optimization
The LHCb experiment stores around collision events per year. A
typical physics analysis deals with a final sample of up to events.
Event preselection algorithms (lines) are used for data reduction. Since the
data are stored in a format that requires sequential access, the lines are
grouped into several output file streams, in order to increase the efficiency
of user analysis jobs that read these data. The scheme efficiency heavily
depends on the stream composition. By putting similar lines together and
balancing the stream sizes it is possible to reduce the overhead. We present a
method for finding an optimal stream composition. The method is applied to a
part of the LHCb data (Turbo stream) on the stage where it is prepared for user
physics analysis. This results in an expected improvement of 15% in the speed
of user analysis jobs, and will be applied on data to be recorded in 2017.Comment: Submitted to CHEP-2016 proceeding
A global class reunion with multiple groups feasting on the declining insect smorgasbord
We report a detection of a surprising similarity in the diet of predators across distant phyla. Though just a first glimpse into the subject, our discovery contradicts traditional aspects of biology, as the earliest notions in ecology have linked the most severe competition of resources with evolutionary relatedness. We argue that our finding deserves more research, and propose a plan to reveal more information on the current biodiversity loss around the world. While doing so, we expand the recently proposed conservation roadmaps into a parallel study of global interaction networks.Peer reviewe
Atmospheric humidity affects global variation of bat echolocation via indirect effects
The peak frequency of bat echolocation is a species-specific functional trait linked to foraging ecology. It is tailored via evolution to suit conditions within the distribution range of each species, but the evolutionary drivers are not yet well-understood. Global patterns of humidity correlate with many aspects of bat ecology. We hypothesized that atmospheric absolute humidity could explain global peak frequency variation directly and indirectly via increasing species body size and bat species richness. These hypotheses were tested using Bayesian phylogenetic path analysis on 226 tropical and subtropical bat species. In line with our predictions, we found a positive total effect of humidity on peak frequency, which was dominated by the positive indirect effects via body size and bat species richness. We did not observe the negative direct effect of humidity on peak frequency, which was hypothesized based on atmospheric attenuation of sound. In line with our expectations, excluding the predominantly clutter foraging bat families from our dataset downplayed the importance of the richness-mediated route. To conclude, our findings suggest that indirect effects, owing to ecology and biogeography of bat taxa, play a major role in the global relationship between peak frequency and atmospheric humidity.Peer reviewe
Z boson transverse momentum spectrum from the lepton angular distributions
In view of recent discussions concerning the possibly limiting energy
resolution systematics on the measurement of the Z boson transverse momentum
distribution at hadron colliders, we propose a novel measurement method based
on the angular distributions of the decay leptons. We also introduce a
phenomenological parametrization of the transverse momentum distribution that
adapts well to all currently available predictions, a useful tool to quantify
their differences.Comment: 12 pages, 6 figure
Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders
In future measurements of the dilepton () transverse momentum,
\Qt, at both the Tevatron and LHC, the achievable bin widths and the ultimate
precision of the measurements will be limited by experimental resolution rather
than by the available event statistics. In a recent paper the variable \at,
which corresponds to the component of \Qt\ that is transverse to the dilepton
thrust axis, has been studied in this regard. In the region, \Qt\ 30 GeV,
\at\ has been shown to be less susceptible to experimental resolution and
efficiency effects than the \Qt. Extending over all \Qt, we now demonstrate
that dividing \at\ (or \Qt) by the measured dilepton invariant mass further
improves the resolution. In addition, we propose a new variable, \phistarEta,
that is determined exclusively from the measured lepton directions; this is
even more precisely determined experimentally than the above variables and is
similarly sensitive to the \Qt. The greater precision achievable using such
variables will enable more stringent tests of QCD and tighter constraints on
Monte Carlo event generator tunes.Comment: 8 pages, 5 figures, 2 table
Technical note: Analytical formulae for the critical supersaturations and droplet diameters of CCN containing insoluble material
International audienceIn this paper, we consider the cloud drop activation of aerosol particles consisting of water soluble material and an insoluble core. Based on the Köhler theory, we derive analytical equations for the critical diameters and supersaturations of such particles. We demonstrate the use of the equations by comparing the critical supersaturations of particles composed of ammonium sulfate and insoluble substances with those of model organic particles with varying molecular sizes
- …