863 research outputs found
Central limit approximations for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on
the metapopulation depends on the number of individuals in the patch. Since
there is usually no obvious natural upper limit on the number of individuals in
a patch, this leads to systems in which there are countably infinitely many
possible types of entity. Analogous considerations apply in the transmission of
parasitic diseases. In this paper, we prove central limit theorems for quite
general systems of this kind, together with bounds on the rate of convergence
in an appropriately chosen weighted norm.Comment: 24 page
The Generic Spacecraft Analyst Assistant (GenSAA): A tool for automating spacecraft monitoring with expert systems
Flight Operations Analysts (FOAs) in the Payload Operations Control Center (POCC) are responsible for monitoring a satellite's health and safety. As satellites become more complex and data rates increase, FOAs are quickly approaching a level of information saturation. The FOAs in the spacecraft control center for the COBE (Cosmic Background Explorer) satellite are currently using a fault isolation expert system named the Communications Link Expert Assistance Resource (CLEAR), to assist in isolating and correcting communications link faults. Due to the success of CLEAR and several other systems in the control center domain, many other monitoring and fault isolation expert systems will likely be developed to support control center operations during the early 1990s. To facilitate the development of these systems, a project was initiated to develop a domain specific tool, named the Generic Spacecraft Analyst Assistant (GenSAA). GenSAA will enable spacecraft analysts to easily build simple real-time expert systems that perform spacecraft monitoring and fault isolation functions. Lessons learned during the development of several expert systems at Goddard, thereby establishing the foundation of GenSAA's objectives and offering insights in how problems may be avoided in future project, are described. This is followed by a description of the capabilities, architecture, and usage of GenSAA along with a discussion of its application to future NASA missions
On Nonequilibrium Statistical Mechanics
This thesis makes the issue of reconciling the existence of thermodynamically irreversible processes with underlying reversible dynamics clear, so as to help explain what philosophers mean when they say that an aim of nonequilibrium statistical mechanics is to underpin aspects of thermodynamics.
Many of the leading attempts to reconcile the existence of thermodynamically irreversible processes with underlying reversible dynamics proceed by way of discussions that attempt to underpin the following qualitative facts: (i) that isolated macroscopic systems that begin away from equilibrium spontaneously approach equilibrium, and (ii) that they remain in equilibrium for incredibly long periods of time. These attempts standardly appeal to phase space considerations and notions of typicality. This thesis considers and evaluates leading typicality accounts, and, in particular, highlights their limitations. Importantly, these accounts do not underpin a large and important set of facts. They do not, for example, underpin facts about the rates in which systems approach equilibrium, or facts about the kinds of states they pass through on their way to equilibrium, or facts about fluctuation phenomena. To remedy these and other shortfalls, this thesis promotes an alternative, and arguably more important, line of research: understanding and accounting for the success of the techniques and equations physicists use to model the behaviour of systems that begin away from equilibrium. Accounting for their success would help underpin not just the qualitative facts the literature has focused on, but also many of the important quantitative facts that typicality accounts cannot.
This thesis also takes steps in this promising direction. It outlines and examines a technique commonly used to model the behaviour of an interesting and important kind of system: a Brownian particle that\u27s been introduced to an isolated homogeneous fluid at equilibrium. As this thesis highlights, the technique returns a wealth of quantitative and qualitative information. This thesis also attempts to account for the success of the model and technique, by identifying and grounding the technique\u27s key assumptions
A law of large numbers approximation for Markov population processes with countably many types
When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for quite general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted â„“ 1 nor
System and method for creating expert systems
A system and method provides for the creation of a highly graphical expert system without the need for programming in code. An expert system is created by initially building a data interface, defining appropriate Mission, User-Defined, Inferred, and externally-generated GenSAA (EGG) data variables whose data values will be updated and input into the expert system. Next, rules of the expert system are created by building appropriate conditions of the rules which must be satisfied and then by building appropriate actions of rules which are to be executed upon corresponding conditions being satisfied. Finally, an appropriate user interface is built which can be highly graphical in nature and which can include appropriate message display and/or modification of display characteristics of a graphical display object, to visually alert a user of the expert system of varying data values, upon conditions of a created rule being satisfied. The data interface building, rule building, and user interface building are done in an efficient manner and can be created without the need for programming in code
When resources collide: Towards a theory of coincidence in information spaces
This paper is an attempt to lay out foundations for a general theory of coincidence in information spaces such as the World Wide Web, expanding on existing work on bursty structures in document streams and information cascades. We elaborate on the hypothesis that every resource that is published in an information space, enters a temporary interaction with another resource once a unique explicit or implicit reference between the two is found. This thought is motivated by Erwin Shroedingers notion of entanglement between quantum systems. We present a generic information cascade model that exploits only the temporal order of information sharing activities, combined with inherent properties of the shared information resources. The approach was applied to data from the world's largest online citizen science platform Zooniverse and we report about findings of this case study
GenSAA: A tool for advancing satellite monitoring with graphical expert systems
During numerous contacts with a satellite each day, spacecraft analysts must closely monitor real time data for combinations of telemetry parameter values, trends, and other indications that may signify a problem or failure. As satellites become more complex and the number of data items increases, this task is becoming increasingly difficult for humans to perform at acceptable performance levels. At the NASA Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these initial efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analyst Assistant (GenSAA) is being developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. Although initially domain-specific in nature, this powerful tool will support the development of highly graphical expert systems for data monitoring purposes throughout the space and commercial industry
- …